
Woodman, Griffiths, Macgregor, Robinson, Holland 1/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

Employing Object Technology to Expose Fundamental
Object Concepts

Mark Woodman, Rob Griffiths, Malcolm Macgregor, Hugh Robinson, Simon Holland,
Computing Department, The Open University, Walton Hall,

Milton Keynes, England MK7 6AA
tel: +44 1908 274066

email: m.woodman, r.w.griffiths, m.d.macgregor, h.m.robinson, s.holland@open.ac.uk

Abstract
This paper reports on the utilisation of object technology in a university-level course on software
development, specifically designed for distance learning, and now enrolling over 5,000 students per
year (average age 37) in the UK, Western Europe and Singapore. M206 ‘Computing: An Object-
oriented Approach’ embodies a practical, industry-oriented view of computing, which has resulted in
a prestigious Award for IT from the British Computer Society. The course is large, representing one
sixth of a degree, and the full panoply of educational media is used in its delivery. M206 introduces
computing via an object-oriented approach. To ensure that the concepts involved in the development
of complex software systems are well grounded and applicable by neophytes, we have employed
object technology itself to realise our pedagogy, investing over 50 person years of academic effort.
The paper describes the agenda for the course, its object-oriented pedagogy and our strategy for
delivering it. In particular, we explain our object systems approach, how we avoid misconceptions
about objects, our analysis and design method, and the Smalltalk programming environment we have
developed to support our pedagogy. The environment is crucial to our strategy and exemplifies our
strategy of pedagogic utilisation of object technology: hence, the paper details one of our object-
oriented simulations and outlines how our strict adherence to the separation of view and domain
model leads to technical innovations. Concluding remarks reflect on the benefits a reflexive strategy
can bring especially in high-pressure industry training situations.

1 INTRODUCTION

The Open University (OU) is the UK’s largest university; its primary mission is to make higher
education available to adults regardless of their personal circumstances and earlier educational
achievements and and it courses are offered almost exclusively in the distance mode. Since it
was established in 1969 more than two million people have studied with the OU the UK, Europe
and world-wide. After fifty person years development, in 1998 the OU launched its flagship
course M206 Computing: An Object-oriented Approach – a radical introduction to designing
and writing complex software systems. It is a large course – 440 hours of study during 33
weeks, worth one sixth of a degree. It goes beyond what any organisation has attempted by
providing to ordinary users of computer systems the resources to become developers of them
and by teaching them object technology from the start. M206 is enrolling over 5,000 students
per year; typically they are aged 37 and in middle management, the social and educational
impact of tens of thousands first learning to think of software in object-oriented terms will be
both dramatic and immediate. From early 1999, an additional 600 are taking the course at the
Singapore Institute of Management, and it will soon become available in the USA.

When devising the syllabus for this course in the early 1990s, we had to assess what we believed
to be the technologies for software development relevant to the end of the decade. To this end
we reviewed and refined our plans in industry as well as academic fora. From industry it
became clear that they needed people who could think in terms of complex, long-running
software systems, not just in terms of simple input–process–output programs. One extremely
effective view of complex systems is embodied by object technology in which systems are
considered to be composed of parts which perform the computational work of the system by
sending each other messages. We also believed that the Internet and the infant World-wide Web

Woodman, Griffiths, Macgregor, Robinson, Holland 2/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

would be of huge relevance. Therefore, object and network technologies, are central to the
course and essentially define its approach to software development. After much debate [1] we
decided to adopt an ‘objects-first’ approach to computing and that the programming language
which would best suit our agenda was Smalltalk-80 [2, 3], an industrial-strength language and
arguably the first really practical object-oriented programming language. For us its primary
benefits were that the language is based on just a few concepts and its programming
environments have the following properties:

❑ they are simple embodiments of object technology;

❑ they lend themselves to tailoring;

❑ they are suitable environments in which to produce of student-alterable simulations.

M206 is not just about object-oriented programming, but also, analysis and design, networks,
operating systems and human–computer interaction (Details of the syllabus and multimedia
presentation can be found at www-cs.open.ac.uk/~m206.) In addition, the course emphasises the
human dimension in software processes, and that it is people and how they deal with complexity
that often determines success or failure. To reflect this, group working via an electronic
conferencing system takes place throughout the course. Hence, the course was designed to be
broad as well as deep, and its size (i.e. number of study hours) provided us with the means to
take a holistic approach to computing. In other words we did not have to break our account of
computing into perceivably discrete pieces, but could offer an account encompassing most of
the aspects involved in real systems. The syllabus topics for the course are:

❑ Systems Thinking
❑ Network Computing (the Internet, Web, conferencing)
❑ Human–Computer Interaction
❑ Object Technology (and programming with Smalltalk)
❑ Exploratory Programming Environment (LearningWorks)
❑ Group Working
❑ Software Development Processes
❑ Modelling for Object Analysis and Design
❑ Practical Computing (e.g. operating and database systems)

On completion of the course, it was our goal that a student, among other things would:

(i) have a extensive understanding and vocabulary of computing, software and object
technology;

(ii) have sufficient knowledge of the object-oriented paradigm to analyse artefacts and
problems in terms of it, to design system parts, and to complete or extend applications;

(iii) be capable of developing applications including appropriate graphical user interfaces;
(iv) be able to discuss the issues involved in large scale software development and group

working and be able to engage in such processes;
(v) be able to describe, analyse and implement user interfaces;
(vi) be able to contribute to a CRC-style of object-oriented analysis.
As may be inferred from the above topics and learning outcomes, the course is very practical,
and a learning-by-doing pedagogy was designed accordingly [4] and in a manner that would
be effective in the distance mode. We needed to focus both on the syllabus, especially the
concepts of object technology, and what educational technologies we could deploy. Here we
decided on a fully multimedia approach: the distance learning materials include some fifty
illustrated text documents (around thirty pages each), associated software, a Web site, 12
nationally broadcast television programmes produced with the BBC, interactive CD-ROM [5],
the Smalltalk programming environment, communications software, and computer conferences
[6]. Crucially, we experimented with prototype materials and with different media mixes,

Woodman, Griffiths, Macgregor, Robinson, Holland 3/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

eventually settling on a consistent design [7] within which our LearningWorks programming
environment was core.

In subsequent sections we describe the initial pedagogy for the course, which specifically
addressed common misconceptions which he had identified, we describe our analysis and
design method, our use of object-oriented simulations, our consistent separation of domain
model and user interface, and the ways in which we used especially LearningWorks to support
our pedagogy.

2 INITIAL PEDAGOGY

The course begins with elementary computing and software vocabulary followed by an
exploration of two commonplace applications that we have implemented – a word processor
and a drawing application. While we teach their use for practical purposes later in the course
(they may be used for writing assignments), the main pedagogic use is to introduce object
concepts. For example, we introduce the notions of object state and state-related behaviour by
discussing what is going on when a word processor document is sent a close message: if nothing
has been typed into the document, it disappears quietly; if its state has been changed by typing
it reports this and the word processor presents a dialogue box asking for confirmation that the
document contents is to be discarded.

Similarly, we explain the way in which a drawing application changes some text to italics can be
modelled by a set of interacting objects sending messages to each other. In this way users, are
encouraged to think about appropriate models of the behaviour they are use to. These
‘appropriate’ models should lead seamlessly to object-oriented programming.

Separation of concerns is an important principle of software development that is clearly crucial
in well-designed object programs. To be able to separate consideration of the user interface
from the functionality of software we next introduce human–computer interaction. As part of
the transition from user to software developer students learn about the important and
unimportant similarities and differences of different GUI operating systems. They are taught
that names (e.g. of buttons) and icons can only be suggestive – in other words the difference
between syntax and semantics.. They learn early about conceptual models, about affordance,
metaphors and about bad design of user interfaces.

Having introduced object ideas in an intentionally vague and gentle fashion, we next progress
to an amphibian microworld of frogs and toads, which is discussed later. To avoid students
thinking that programming is all about frogs, toads, and the like, we of course do introduce
more mundane computer science examples. However central to our pedagogy and to the design
of LearningWorks simulations and tools is the notion of progressive disclosure: early on, very
few classes are made visible, and within these very little implementation code is not made visible,
but as the course progresses, we provide increasingly more powerful browsers that eventually
reveal the whole Smalltalk library. Indeed. once we have dealt with the basic concepts of object-
oriented programming and Smalltalk (and incidentally have taught students how to use e-mail,
conferencing and the World Wide Web) we can progress to more elaborate visualization tools
which can be used to explore more Smalltalk concepts: expression series, message answers,
nested expressions, reference, variables, etc.

In the next section we detail how our initial Smalltalk examples have been chosen to avoid
common object misconceptions which we have observed in students.

3 AVOIDING OBJECT MISCONCEPTIONS

In face-to-face instruction, object concepts are often introduced with a great deal of practical
demonstration during lectures, and with a lot of expert help on hand for lab work. This is not
because object concepts are intrinsically difficult, but because the subject does offer many
opportunities, especially in the early stages, for students to develop misconceptions, which can

Woodman, Griffiths, Macgregor, Robinson, Holland 4/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

be hard to correct later. Such misconceptions can act as barriers through which all later
teaching on the subject may be inadvertently filtered and distorted. The problem of avoiding
object concept misconceptions can be particularly acute in the case of distance education. In
this context it is often impractical to give frequent demonstrations or to provide immediate
feedback to student queries during such demonstrations. The problem is made more acute
when the student population includes a mixture students with no programming experience, and
those with previous experience of a procedural programming language. For this reason, we
have paid particular attention to characterising measures for avoiding elementary
misconceptions seen in learners who are either new to computing or who have some experience
with procedural programming. The misconceptions we concentrated on were ones we identified
during the developmental testing of this course with prototype materials [7].

Often, early teaching examples feature classes with a single instance variable; we found that
there is a danger that some students with previous experience of procedural programming may
generalize prematurely from these examples to develop the misconception that objects are in
some sense mere wrappers for variables. We have avoided this misconception by the simple
discipline of ensuring that all introductory object examples make prominent use of classes with
more than one instance variable. Furthermore some students develop the misconception that
instance variables of objects of a given class must all refer to objects of a single class. Therefore
as a remedial measure, classes in early teaching examples have at least two instance variables,
which reference objects of different classes.

We have also avoided examples where an object behaves essentially like a database record, or
repository for inert data. A case in point might be a music CD class, in which each object
represents a music CD, and stores information on the title, artist, tracks, etc. This overemphasises
the data aspect of objects at the expense of the behavioural aspect. The practical danger is that
students may come to tacitly assume that all objects are simple, inert records. They may fail to
realize that the behaviour of some objects may alter substantially depending on their state. This
misconception can be avoided by using introductory object examples that prominently feature
classes where the response to a message is substantially altered depending on the state of the
object. A simple example object whose behaviour is affected by its state might be an Account
object that refuses a debit request when an overdraft limit is reached. Such debit requests are
not accepted until the limit is changed, or until more money is credited.

The kind of code that students see in the first methods they look at can be very influential on
their thinking. For example, in many introductory teaching examples, instance variables refer to
immutable objects such as numbers. For this reason, methods that manipulate such instance
variables tend to use assignment rather than method sending. As a piece of programming, of
course, and as a single teaching example, there is nothing in the least wrong with this. However,
there is a danger that exclusive exposure to this way of changing state tends to foster the
impression that work in methods is exclusively done by assignment (and not by message
sending). If early teaching examples happen to be chosen so that all state is represented by
immutable objects, such as number objects, it is hard to avoid this danger. We have observed
that even very experienced students pick up this impression from such examples and that this
misconception can lead to an over reliance on assignment and a procedural style of coding. To
avoid the problem we have used examples where the values of instance variables are not
invariably immutable objects, but instead objects which themselves have state.

When presenting a series of examples in the early stages, it is easy to find oneself using
examples in which only a single instance of each class is used. At some stage or another, some
students tend to become confused between classes and their instances. Indeed, in some object-
oriented languages there is no distinction. So as to not foster this misconception, we have
ensured that examples use several instances of each class in any given teaching example.

In the traditional bank account example (which we ourselves have used), frequently just two

Woodman, Griffiths, Macgregor, Robinson, Holland 5/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

instance variables are used, name and balance. This is admirable in that there are at least two
instance variables, that are not of the same type, and the example is intuitively clear and familiar
to most people. However, in the minds of students with previous exposure to database concepts,
the name instance variable in this example (whatever that variable is called) can give rise to
anxiety and misconceptions. There is a tendency to confuse the name instance variable with the
identity of the object, or with a variable that refers to the object (e.g. myAccount). These
confusions can lead to further misconceptions, some of which are itemised below:

❑ only one variable can reference a given object at a given time;

❑ once a variable references a given object, it will always reference that object;

❑ two objects of the same class with the same state are the same object;

❑ two objects with the same value for the name attribute are the same object.

Rather than try to deal with these misconceptions by arguing or talking about them, the easiest
approach is to immediately let the students experiment with a set of avoidance examples
summarised as follows:

Multiple assignments: get students to assign a single object to three variables at once.
Demonstrate that each variable references the same object by showing that state changes
effected via any one reference can be inspected immediately via all of the other variables.

Re-assignment: get students to assign a different object (ideally of an altogether different class)
to one of the variables, and then show by sending messages and inspecting the result that
the variable now refers to a different object, whilst the other variables still refer to the
original object.

Objects with identical state: prove that two instances with identical state are not the same object
by sending messages that make their states diverge.

Instance variables with the same value: show that two demonstrably different instances may
have the same value for the same instance variable.

Hence to clearly teach fundamental object concepts we had to develop appropriate materials,
programming environment and simulations to practice such activities.

4 ANALYSIS AND DESIGN

Our approach to analysis and design is loosely centred around the CRC approach of Wirfs-
Brock et al. [8] but with a flavour of the more formal treatment of associations given by Cook
and Daniels [9]. This results in an overall 'feel' for students that is both sufficiently informal
and intuitively attractive but nevertheless has sufficient rigour to underpin (and reinforce) the
fundamental object concepts. Analysis proceeds with the identification of classes, associations,
relationships and invariants, with understanding being expressed via the incremental
development of an object model that consists of both a graphical and a textual representation,
the two complementing one another. Importantly (and perhaps in contrast with the informality
of the original CRC approach) all features of the model are articulated in terms of classes (and
associations) and instances. For instance, much of our early teaching in this area is done via an
example involving a hospital with wards, doctor, patients and nurses with the statement that
some nurses are designated to supervise one or more other nurses on the same ward. This is
first expressed as the rule that a nurse who supervises other nurses must be assigned to the same
ward as the nurses he/she supervises. This rule (which, in fact, is initially expressed in a much
less formal fashion) is then articulated in terms of instances as follows:

Invariant

Any given instance of Nurse is associated with other instances of Nurse via the

Supervises association. Each of these other instances of Nurse must be associated, via

Is-Staffed-By, the same instance of Ward that the given instance of Nurse is associated

Woodman, Griffiths, Macgregor, Robinson, Holland 6/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

with via Is-Staffed-By.

Indeed, this insistence on the articulation of understanding in terms of object model constructs
is a potent and reflexive tool, where issues that arise in some statement of requirements are
articulated as object model constructs, thereby giving rise to questions that need to re-
articulated back to the (user) requirements and their solutions re-expressed back again in terms
of object model constructs. As we emphasise in one of the analysis and design chapters:

This need to clarify the analyst’s understanding of the detailed meaning of the application area should
not be seen as some deficiency in object-oriented analysis. Rather, it is one of the great strengths of an
approach such as that based on classes, associations, responsibilities and collaborations that the activity
of constructing an object model forces questions about the meaning of the application area to be asked.
It is also indicative of a characteristic of good analysis – it is essentially an active exploration of
meaning rather a passive representation of ‘requirements’.

Such an approach is followed through in later stages of analysis (and design), when examining
the necessary collaborations and the assignment of responsibilities – students are forced
(sometimes, painfully) to express understanding in terms of instances, how references to such
instances may be obtained (and the business of a navigation path) & how instances may fulfil
their responsibilities. This approach is underpinned with a number of key pedagogical (and,
indeed, epistemological) characteristics which include:

1. The acquisition and practise of dispositional skills in the identification of classes,
associations, responsibilities and collaborations by exposing students to a range of problem
scenarios where those skills may be deployed.

2. The separation of concerns (user interface versus problem domain) as crucial in the
successful design of systems.

3. The importance of re-use within design.

4. An emphasis on the importance of producing credible and recognisable (for the student)
Smalltalk code as the demonstrable product of the analysis and design process.

The overall outcome of this learning process is a practical competence in – and an
understanding of the purpose and nature of – the activities that must be engaged in when
carrying out object-oriented analysis and design, rather than an exploration of the nuances of
some prescriptive method. Importantly, our emphasis on fundamental object concepts is not
some sterile mouthing of paradigmatic fundamentalism: rather it is an emphasis that allows us
to actively explore and comprehend the reality of a world that is suffused with the full
complexity and richness of human life.

5 OU LEARNINGWORKS

A core course component heavily used in teaching object concepts is OU LearningWorks, a
Smalltalk environment which we developed [10] from work with Adele Goldberg and her
colleagues on the LearningWorks [11] programming framework [12]. After an impartial
analysis of how students used a prototype of our LearningWorks environment [7], we adopted a
consistent design for organising the teaching materials, simulations and programming tools into
plug-in Smalltalk modules called LearningBooks. As far as learners are concerned
LearningWorks offers a set of LearningBooks whose user interfaces follow a book metaphor: a
LearningBook is organised into sections, and sections into pages. Each page is in fact an
application which can be a Web-style HTML page, a programming tool, or a simulation. And,
like in a loose-leaf binder, a page may be ‘detached’ from its book and left conveniently on
the desktop, allowing the user to continue to view a page from one section, having moved to
another. In our standard LearningBook design, the first section of a LearningBook always
contains an HTML-browser page of practical activities and discussions, a glossary of terms, and
a page for taking notes (see Figure 1). The second and subsequent sections of each

Woodman, Griffiths, Macgregor, Robinson, Holland 7/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

LearningBook contain Smalltalk classes, programming tools such as class browsers and
workspaces (pages for evaluating Smalltalk code) and microworld visual simulations which
students use to carry out the practical activities.

Figure 1

An overriding requirement of the environment was that it should initially constrain novices and
hide detail from them but would progressively disclose the facilities and rich detail that would
be familiar to the experienced practitioner, this was especially important due to the complexity
of object-oriented class libraries. This powerful mechanism amongst other things allows a
LearningBook author to:

❑ define which classes are visible to the debugger and the class browser;

❑ define for each visible class those methods whose code can be viewed and edited by the
student;

❑ define for each visible class those methods whose code cannot be viewed by the student,

Hence as the course progresses, the LearningBooks can provide increasingly more complex
class browsers which expose more of the complexity of the Smalltalk library.

Next we describe a microworld which was designed to be a touchstone for students and teachers
alike – a simulation with which they become intimate and using which they can reason about all
object concepts taught in the course.

6 SIMULATIONS WITH OBJECTS

Smalltalk is inextricably linked with simulation [13]. Indeed, an object-oriented system is often
described as a simulation, or model, of some part of the real world or a business enterprise. We
were therefore culturally well disposed to introduce simulations into our interactive learning
environment in the form of microworlds. One in particular was used as a touchstone for
reasoning about object concepts – an amphibian microworld that models the behaviour of
instances of classes Frog and Toad and of a subclass of Frog, HoverFrog. The initial
simulation given to students is a concrete cartoon-like world consisting of frogs and various
other amphibians (two variations are shown in Figure 2 and Figure 3). For the purposes of the
simulation, frogs can be made to move their position and change their colour. Via a graphical,
highly visual user interface, with usual menus and buttons, students can look at the state of
frogs, send messages to them, see how they behave in response, see how this affects their state,
inspect message replies, and look at how a message to one frog may in some cases cause a frog
to send a message to another frog.

Woodman, Griffiths, Macgregor, Robinson, Holland 8/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

The simulation has been devised to expose all object concepts, starting with the simplest:
initially the simulation shows objects of the classes Frog and Toad which a have identical state
attributes – position and colour – and identical message protocols, such as green, brown,
home, right and left, which respectively set the receiving object’s colour to green, and
brown, and change its position to the ‘home’ one and move left and right. Students select any
of the objects in the microworld from a regular scrolling list (which they much later discover is
another object!) and use the GUI widgets to send the corresponding messages. This simple user
interface not only allows straightforward message sending to be visualized, it allows apparently
advanced notions such as polymorphism to be demonstrated; for example, when a frog is
selected and the home button is clicked (resulting in the message home being sent) the
receiving frog moves to the leftmost position, but if a toad has been selected, and so receives the
message home, it moves to the rightmost position – the ‘home’ position for toads.

Similarly, some menu commands correspond to messages that require arguments. For example,
to change the colour of frog5 to, say red, it must receive a message colour: Red ; as can be
seen in Figure 2 in the graphical user interface we have provided the button menu colour,
whose menu items include the possible arguments of Blue, Brown, Green, etc.

To expose the notion of inheritance in which a subclass has more state and an extended
protocols we have invented a new species of hovering frog, simulated by HoverFrog as a
subclass of Frog. For example, HoverFrogs can hover vertically and have height in their state,
and respond to messages that its superclass instances cannot, e.g. Frogs, do not understand the
message up. After initial exposure to the simulation, we reveal an addition to the user interface,
an input box in which Smalltalk expressions can be entered. This operates in parallel to the
graphical part of the user interface. Anything that can be done using the graphical elements can
be done using the textual commands. For example, the Frog instance kermit can be asked to
move left turn brown or turn the same colour as the Frog instance gribbit by ‘evaluating’
the following messages

kermit left.
kermit brown.
kermit sameColourAs: gribbit.

Figure 2 Figure 3

Through the use of this simulation and other simulations, for example, an air traffic control
simulation, our students quickly learn the fundamental concepts of object-oriented systems.

7 SEPARABLE USER INTERFACES

Our view of object-oriented systems was consistently supported by adhering to the design
principle of separating user interfaces from models. An innovation of LearningWorks we used

Woodman, Griffiths, Macgregor, Robinson, Holland 9/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

heavily to sustain this idea is the provision of page-local and section-local variables,
implemented in page and section dictionaries respectively. In practice the latter are the most
useful. For example, any objects of any class created in a Workspace page and assigned to
section-local variables are accessible by all pages in that same section.

To facilitate the visualisation of separable user interfaces, assignment, object creation and
disposal, our amphibian microworld was built not as an arbitrary application, but, in effect, as a
specialised graphical view of the section variable dictionary. This graphical view of the section
dictionary is specialised in the sense that that it only displays objects of certain classes of initial
interest (e.g. frogs, toads, hoverfrogs). Simply creating an object of the relevant class in a
Workspace page and assigning it to a section variable will cause its graphical representation to
appear in the amphibian microworld page automatically. A key point is that if the student
reassigns variables in the Workspace so that a particular displayed object has no remaining
references to it, the automatic garbage collection of that object will be graphically dramatised in
its immediate disappearance from the microworld.

Figure 3 shows a LearningBook which is open at the amphibian World page. Next to it is a
Workspace page that has been ‘detached’ from the same section of the book, i.e. placed on
the desktop. Students can send messages to amphibian objects either by clicking buttons on the
amphibian World page, or by sending messages to them by textually sending messages to
amphibian objects in the Workspace page. In either case any state-changing messages such as
right, left or colour: will be reflected in the amphibian microworld.

The parallel use of textual and graphical user interfaces to elicit exactly the same behaviours
and state changes has three purposes. Firstly, it introduces students gently to the language used
to program the simulation, Smalltalk. Secondly, the parallelism with the GUI can be used to
explain elements of the Smalltalk language in the context of a semantics that has already been
explored and well understood via the graphical user interface. Finally, the fact that the
simulation can be controlled equally well by either interface helps to establish the fact that the
simulation exists independently of either user interface. This is a key point for the teaching
later in the course of the details of a separable user interface architecture which enable students
to implement their own GUI.

Having used a programming language in ways such as shown in the example above to elicit
existing behaviours in the simulation, students are then shown how the programming language
can be used to create new behaviours. To summarize briefly, this is achieved by showing
students how to package up a series of message expressions such as those shown above in order
to define a new method (in a class browser) that can then be added to the repertoire of any
chosen kind of amphibian. The new behaviour will be immediately displayable in the existing
simulation since the behaviour will be composed from existing displayable behaviours. Thus
students can create new behaviours while still keeping in the bounds of the visible simulation.

Students are next shown how new behaviours, such as dances, can be associated with new
variants of an existing class (e.g. a modified Toad or Frog class). Students also learn how to
modify the effect of existing messages (e.g. left, right, green, brown) for instances of such
a new class. Once again, all of the new student-created behaviours and instances of new classes
will to be automatically displayable and visible in the simulation, without students explicitly
having to attend to display mechanisms.

As the course progresses students are introduced to other microworlds, for example a
simulation of an air traffic control system. Eventually they are able to construct new kinds of
objects from the ground up and – provided they are subclassed from a displayable object and
no new state added – the objects, their state and their behaviours will all automatically be
displayed in the simulation, without students having to pay any attention to explicit graphical
interface programming. This remarkable property follows from Smalltalk’s separable user
interface architecture, with which students are rapidly acquainted. This architecture is

Woodman, Griffiths, Macgregor, Robinson, Holland 10/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

particularly suitable for working with simulations, because the domain model and user interface
can be developed or modified quite separately. More precisely, instances of objects that
students create are visible in the simulation provided that any time their state changes, students
arrange for the objects to issue a single message inviting any user interfaces that may exist to
query their state and then mirror it graphically. The user interface must already know how to
display the given kind of state, but provided students subclass from known classes and do not
add state, this will happen automatically. If these conditions are violated, then the visibility of
objects in the simulation will be lost, as students are encouraged to explore systematically.
Ultimately neophytes are shown how to construct their own novel graphical interfaces, and their
own domain objects and thus create their own simulations.

Hence the simulation approach is used by students not only to analyse, understand, and modify
complex systems, but also to create their own simulations including their own separable and
modifiable graphical interfaces. This both demonstrates the power of simulation and its
embodiment in pure object systems.

8 GOALS FOR GUI IMPLEMENTATION

As outlined above, our pedagogy very clearly establishes the separation of domain model and
user interface. Given this, for the notion of separable user interface architectures to mean
anything to novices, they have to be able make concrete the abstract by eventually
implementing their own user interfaces using a GUI builder, and to write all of the domain
model and user interface code necessary to make these interfaces work. The most general goal
of this part of our pedagogy was that students should understand, in detail, the advantages of
allowing user interface and domain model development to be pursued independently.
Specifically, our students should be able to:

❑ create their own user interfaces, and connect them to domain models, thus creating
applications.

❑ understand and use the broadcast dependency mechanism and the messages involved;

❑ alter existing user interfaces built with a GUI builder;

❑ give a model multiple user interfaces simultaneously;

❑ reconnect a user interface to different domain models (i.e. to a different instance, or, to an
instance of a different class where appropriate).

One of the earliest and most developed architectures in Smalltalk is Model View/Controller
(MVC) [14]. MVC is an approach to application development that divides the application into
the information of interest (model), the visual representation of that information (view), and the
handling of user input (controller). This was the first widely used architecture for user
interfaces that allowed models (i.e. application code) to be written quite independently of their
user interfaces, and which allowed user interfaces to be modified, replaced or run several at the
same time, without the need for any changes at all to the model. The model need not know
whether it has a user interface, or how many user interfaces it has. These characteristics are the
hallmark of a separable user interface.

In order to allow various kinds of flexibility, VisualWorks instantiation of MVC introduces a
kind of impedance matcher or buffer class whose instances stand between the model and the
various widgets. This class is called ApplicationModel. In effect, application models absorb
the messiness of practical linking between model and user interface widgets, and translate
messages from widgets in the value/value: protocol into the domain specific protocol of the
model in question. The cost of this approach is that a lot of knowledge about both domain
model and user interface needs to be built into the application model by programmer. Indeed,
the application model may end up mirroring and hence duplicating much of the domain
model. This architecture works very well for professional programmers. It allows tremendous

Woodman, Griffiths, Macgregor, Robinson, Holland 11/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

flexibility in the fine detail of how widgets can be used, and it keeps user interface logic out of
domain code. However, even for experienced programmers, using the MVC mechanism [15]
can be very daunting. For any given application there are will be multiple models, views and
controllers. For example, the ‘model’ for even a small application will consist of the application
model, and possibly multiple models from the domain model. The user interface will consist of
many views (the graphical representation of widgets). Each widget will be a dependent of some
different aspect of the application model rather than the whole user interface simply being a
dependent of some domain object. Therefore, for the beginner, this complexity tends to
obscure the essential simplicity of the separable user interface idea.

In a degree course aimed principally at first-time computing students, the complexity of the
MVC architecture behind the VisualWorks GUI builder poses a problem that is not mitigated by
the friendly and simplifying front end of LearningWorks, even with our principle progressive
disclosure [10]. We did not want students merely to learn to use a GUI builder. We wanted them
to understand and to work with separable user interfaces, to understand the architecture that
makes them possible. To this end we devised a simplified version of MVC which we term MUI,
Model–User Interface. MUI, is an architecture that allows beginners to easily create GUI
applications by binding domain objects (models) to instances of user interface classes that they
create using a simple GUI building tool. At each stage of the process extensive checks are
carried out and the runtime environment ensures that problems do not result in cryptic
Smalltalk exceptions but instead are reported in an understandable way (in the vocabulary of
the course), after which a safe recovery is made.

Before we introduce the MUI architecture to our students, they are taught about the broadcast
dependency mechanism from which the Observer pattern is abstracted [16, 17]. Using this
mechanism one object (the observer) is made a dependent of another object (the observed).
They learn that to notify an observer object of any state changes the observed must include
self changed message expressions in its state-changing methods. The model’s only respon-
sibility is to notify its dependents when its state changes. In that way the model need not take
any account of what its dependents are, or indeed whether it has any. The responsibility is on
any user interface components to respond appropriately to such notifications, and, where ap-
propriate, to query the model about its current state so that they can update themselves suitably.

Our design goal for MUI was that an arbitrary model could be bound to an arbitrary user
interface via this broadcast dependency mechanism. In other words, we wanted an architecture
in which a user interface class could be made a direct dependent of a model rather than the
individual widgets being dependent on value models in an application model as is the case with
the VisualWorks instantiation of MVC. Furthermore, as long as the model provided the protocol
expected by the widgets in the user interface it should simply work without any further ‘glue’
code being written by the user. In fact, the only user interface related code that appears in the
model is the self changed expression mentioned above so that the user interface can be
alerted via the broadcast dependency mechanism that the state of the model has changed. There
are three basic components to the architecture which we subsequently outline: the OpenGUI
tool, the user interface widgets and the test page.

 This OpenGUI tool appears as a page in a LearningBook (see Figure 4). It looks like a fairly
standard (if very simple) tool for laying out interface widgets and giving them property values.
(This tool is subclassed from the drawing application used earlier in the course, so its user
interface is familiar to students.) OpenGUI supports the following widgets: label, divider, group
box, action button, check box, radio button, slider, text editor, input field and list box. We
considered various ways of implementing menu buttons and other more complex widgets, but
inevitably interface code ends up in the model and so they were rejected.

 The amphibian microworld described earlier displays graphical representations of Frog objects.
Their protocol includes the messages position and position:, which are used to get and set

Woodman, Griffiths, Macgregor, Robinson, Holland 12/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

the position instance variable representing a frog’s position attribute. With this information
students can construct an alternative user interface to control instances of the Frog class.

Figure 4 Figure 5 Figure 6

 In the OpenGUI page the student selects the slider drawing tool and draws the slider to the
required size on the canvas. With the drawn slider still selected the user clicks on the
Properties button to open a dialogue box which will allow the properties of the slider to be
set. (See Figure 5.) As sliders can only work with numerical information the user is asked to
supply the names of messages that will get and set a numerical instance variable in the
prospective model (in this case a frog). Note that in the VisualWorks GUI builder the user
would be asked to supply the name of a value model in the application model, rather than a
message from the domain model’s protocol. Other values requested are highest and lowest
values that the slider can set in the model using the setter message, and the size of the
increments the slider can make. To complement the slider an input box can be added to the
canvas as in Figure 6.

 Note again that the user supplies getter and setter messages from the model’s protocol rather
than the name of a value model in the application model. As we mentioned earlier some of our
widgets are much simpler than the equivalent VisualWorks widgets. As you can see in Figure 5
the OpenGUI input field supports only two types – number and string. Also input fields are
always editable. To make ‘editable’ another property would be trivial to implement but this was
resisted in the cause of simplicity.

 When saving the properties of a widget, OpenGUI ensures:

❑ that none of the fields in the properties dialogue box are blank;

❑ that any getter is a legal unary selector;

❑ that any setter is a legal single keyword selector.

 Before saving the user interface as a class, OpenGUI checks that:

1. the user interface is complete and consistent and the user is warned if they are using the
same selector in more than one way in the same user interface;

2. the class name chosen, is either a new class name or the name of an existing student-
authored user interface class.

 The user interface class is then saved as a subclass of OUGUIAbstractInterface, itself a
subclass of ApplicationModel in VisualWorks. Such a user interface class consists of a single
class method, windowSpec, which specifies how the user interface is to be drawn. When an
instance of the user interface class is opened, methods in the superclass
OUGUIAbstractInterface (which hides the detail of implementation) dynamically create all
the value models needed to support the MVC architecture that underpins MUI.

Woodman, Griffiths, Macgregor, Robinson, Holland 13/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

 Attaching an instance of this new interface to a suitable model is achieved through the
LearningBook’s Page menu button. Selecting the Add.. . option opens up scrollable list of
available user interface classes (Figure 7).

 F igure 7 Figure 8 Figure 9

 After selecting the desired user interface class the neophyte programmer is then prompted to
select an appropriate model from the section dictionary (Figure 8), in other words simply to
select a section-local variable. This simple reference to a suitable model must have previously
been established in the workspace in the same section.

 To guarantee that the contract between user interface and model has been properly established,
the MUI behaviour inherited by the particular user interface then carries out extensive checks
on the model’s protocol and degrades gracefully (see Figure 12) if the right methods are not
present in the model, or if they return a message reply of the wrong type. If the checks establish
that a contract between user interface and the model can be properly established, an instance of
the user interface is created and inserted as the current page in the LearningBook (Figure 9).

 F igure 10

 A model from the section dictionary can be associated with any number of user interfaces
pages within the same section as the model. Therefore, by ‘detaching’ a Workspace and an
amphibian World from the same section of the LearningBook, and placing them side by side
with the new user interface page, students can view the effect of sending state-changing
messages to the model from a Workspace, the state changes will of course be reflected in both
user interfaces. Similarly, changing the state of the model from either user interface will be
reflected in the other user interface and can be confirmed by inspecting the model from the
Workspace. Thus reinforcing the notion of separable user interfaces. See Figure 10.

 At any time the user can choose Test mode from the Page menu button to associate a new
model (from the section dictionary) with the page’s user interface (see Figure 11). This new

Woodman, Griffiths, Macgregor, Robinson, Holland 14/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

model need not be of the same class as the previous model, the only proviso is that it
understands the required protocol and that the appropriate setter methods include the self
changed message expression.

 Exceptions and errors involving user interface classes and models in VisualWorks are next to
impossible for the neophyte programmer to debug or reason about because of the huge
number of complex classes involved. With the MUI architecture, students do not need to see
MUI-specific classes or VisualWorks runtime GUI code to understand any errors associated
with binding an instance of a user interface class with a model – problems are caught and
reported in terms of objects and code created directly by the student. For example, when
adding an instance of a user interface class as a page in the LearningBook, if the user interface
discovers that the selected model cannot respond to the entire protocol needed by the interface,
or if a getter method returns an object of the wrong class, details are reported and no attempt is
made to open the interface, instead a test page is inserted into the LearningBook from where the
user can select other pairs of local variables and interface classes. In Figure 12, the user has
attempted to bind an instance of the FrogUI class to a model which is of class Account rather
than of class Frog – Account objects do not understand the message position:.

 Similarly, once a user interface is opened, MUI detects the following errors:

❑ that the get or set methods it needs to use are no longer understood by the model (i.e. the
user has deleted the method since the interface was opened);

❑ the return value of a getter or the argument of a setter does not match the appropriate type
(because the user has edited the method since the user interface was opened);

❑ that a method in the model causes an exception.

 These errors are reported to the user and a test page is substituted for the current user interface
page. Finally, if the method called by a widget results in an infinite loop and the user presses
break, they are told which method was probably in the infinite loop and a safe recovery is
made.

 F igure 11 Figure 12

There are some significant restrictions in the current implemementation of OpenGUI. For
instance, the requirement that a local variable be used to link a user interface to a model means
that a collection of models cannot be linked to collection of user interface instances. And, of
course OpenGUI is much simpler than a commercial GUI builder, in that it supports fewer
widgets, and it assumes that a user interface can only deal with one model at a time (i.e. the
views in the user interface only show information from one model). However, it is conceptually
straightforward and simple for beginners to use. In effect, we have traded off some loss of
flexibility with a tool that allows the unconfident to experiment concretely with all of the key
concepts of separable interface architectures.

Woodman, Griffiths, Macgregor, Robinson, Holland 15/15 19/2/99 9:37 PM

TOOLS Europe Paper on M206

9 CONCLUSION

M206, Computing: An Object-oriented Approach is aimed at the needs of industry and departs
from conventional introductions to software development by its object-oriented account of
computing and its goal of producing graduates who can think in terms of complex, long-
running software object-oriented systems. We have deployed a wide range of technologies to
support learners grappling with fundamental concepts of object technology in a way that was
appropriate to the distance mode and, in particular, to provide a transformation from novice to
accomplished practitioner. We have achieved this because of our firm adherence to a consistent
set of pedagogical principles and because of the basic soundness of the LearningWorks design
and our principled use of it. As we have outlined, we have devised a clear pedagogy and
constructed a programming and learning environment to match the pedagogy, using
LearningBooks to package work, systems and tools. Most importantly we have devised and
implemented the principle we call progressive disclosure. Hence, using LearningWorks and a
wide variety of simulations and programming tools, novices can progress from using and
extending systems through ‘game play’ microworlds, to programming in all its minutiae,
through object-oriented analysis and design to graphical user interface design and
implementation. And, while doing so they become proficient in a sophisticated programming
environment, one recognisable by professionals.

References
[1] Woodman, M., Holland S. and Price, B., Pervasiveness of a Programming Paradigm: Questions
Concerning an Object-oriented Approach, Proceedings CS Education, Dublin, 1994.
[2] Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation. Addison-Wesley
Reading, MA, 1983.
[3] Woodman, M. and Griffiths, R., Programming Language Choice for Distance Computing, in
M. Woodman, Programming Language Choice, International Thomson Computer Press, London, 1996.
[4] Woodman, M. and Holland, S. From Software User To Software Author: An Initial Pedagogy For Intro-
ductory Object-Oriented Computing, Proceedings SIGCSE/SIGCUE ’96, Barcelona, Spain, June 1996.
[5] Woodman, M., Law A., Holland S. and Griffiths, R, The Object Shop – Using CD-ROM Multimedia
To Introduce Object Concepts. Proceedings SIGCSE 97, San Jose, February 1997.
[6] Poniatowska, B., Richards, M., Griffiths, R., Robinson, H. and Woodman, M., Organising Online
Resources Between Web and Computer-based Conferencing. Submitted to EdMedia 99.
[7] Sumner, T. and Taylor, J., New Media, New Practices: Experiences in Open Learning Course Design.
Proceedings CHI ’98, pp432–439, Los Angeles, April 18–23 1998.
[8] Wirfs-Brock, R., Wilkerson, B. and Wiener, L. Designing Object-oriented Software, Prentice Hall,
Englewood Cliffs, NJ, 1990.
[9] Cook, S. and Daniels, J., Designing Object Systems, Prentice Hall Int., Hemel Hempstead, 1994.
[10] Woodman, M., Griffiths, R., Macgregor, M., Holland, S., and Robinson, H., Exploiting Smalltalk
Modules In A Customizable Programming Environment, Proceedings of ICSE 21, International Conference
on Software Engineering, Los Angeles, May 1999.
[11] Goldberg, A., Abell, S., and Leibs, D., The LearningWorks Delivery and Development Framework,
Communications of the ACM, 40(10), 78–81, 1997.
[12] Wirfs-Brock, R.J. and Johnson, R.E., Surveying Current Research in Object-oriented Design.
Communications of the ACM, Vol 33, No 9, pp104 – 124, September, 1990.
[13] Goldberg, A. and Ross, J., Is the Smalltalk-80 System for Children?, Byte, 6(8), August 1981.
[14] Krasner G. E., Pope S. T., A Cookbook for using the Model View Controller User Interface Paradigm in
Smalltalk 80 Journal of Object-oriented Programming, Vol 1, #3 pages 26–49, 1988.
[15] Howard, T., The Smalltalk Developer’s Guide to VisualWorks, SIGS Books, New York, 1995.
[16] Gamma E., Helm R., Johnson R., Vliffides J. Design Patterns: Elements of re-usable Object-oriented
Software, Addison Wesley, 1994.
[17] Alpert S. R., The Design Patterns Smalltalk Companion, 1998, Addison Wesley, 1998.

