
Reflective Composition: the Declarative Composition of
Roles to Unify Objects, Roles, & Aspects

Simon Holland
Department of Computing

The Open University
Milton Keynes MK7 6AA

United Kingdom
+44 1098 653148

s.holland@open.ac.uk

ABSTRACT
As bases for object-orientation, both class-based and prototype-
based organization have limitations. We argue that roles have
significant benefits as a foundation for organizing objects. We
further argue that these benefits can be realised most flexibly
using logic meta-programming. Additional benefits from this
approach are to reduce redundancy and subsume aspects.

Categories and Subject Descriptors
D.1.5 [Object Oriented Programming].

General Terms
Design, Experimentation, Languages, Theory.

Keywords
Roles, Logic Meta Programming, Role Models, Composition,
Generative Programming, Aspects.

1. REFLECTIVE COMPOSITION
There are practical and philosophical problems with

both classes and prototypes as organising mechanisms for
object-orientation [1-5]. Class-based organisation has well-
known limitations in dealing with rapidly evolving situations
[2,6]; prototype-based organisation, though highly flexible, can
be undisciplined without additional organising principles [5,7,8].
We argue that an approach to object orientation based
fundamentally on roles has the potential for significant benefits;
conceptual, methodological, and practical [1,3,9,10]. Abstract
arguments in favour of role-modeling are well-known, but have
to some extent been muted in their force by difficulties in
implementing role-based object mechanisms without
introducing new problems [9,11,12]. We consider two such
problems, and discuss ways of avoiding them, leading to a

This paper appeared as Holland, S. (2004) Reflective Composition: the
Declarative Composition of Roles to Unify Objects, Roles, and Aspects.
In OOPSLA Companion 2004: pp 224-225. John M. Vlissides, Douglas
C. Schmidt (Eds.): Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada. ACM 2004, ISBN 1-58113-833-4.

new approach to organising objects using role-based principles,
known as Reflective Composition (RC).

The first problem, typically encountered in any
approach to implementing role-based programming is the
problem of object schizophrenia [9,11]. Informally, this
problem can be outlined as follows. When modeling a domain
using a role-based approach, two kinds of entity are
encountered: roles and instantiable objects. The economical
approach is to model both kinds of entity as objects. However, a
problem then arises with object identity, as follows. When an
object plays one or more roles (which may interact with each
other) then typically (though not always) it is inappropriate from
the point of view of domain modeling for each role to have its
own identity, as seen by objects external to the containing
object. To address this problem, Reflective Composition uses a
sub-object/ super object approach, also used by others such as
Bardou [11]. In effect, this provides a facility to coalesce an
aggregation of sub-objects into a super-object, after which the
sub-objects have no separate object identity.

 The second principal problem addressed by Reflective
Composition is more general. Loosely speaking, the problem is
that, as role-based models become larger, they can become
difficult to organise and re-use. In order to fully realise, in a
scaleable way, the flexibility and expressivity that role-based
organisation makes possible, Reflective Composition uses logic
meta-programming [13,14] to factor out the definition of all
composition relationships (both inheritance relationships, in the
broadest sense, and aggregation [15]). One way of viewing this
is to say that composition relationships are factored out into a
separate aspect - though this has nothing to do with the claim
that RC unifies role with aspects – this property arises in a
different way, as described below.

In order to allow role composition to be factored out
cleanly, and to facilitate the maximum flexibility and minimal
redundancy in the re-use of roles, this aspect is expressed by a
declarative, reflective, logic meta-programming (LMP) system,
which manipulates composition relationships between
parameterised roles [14,16]. A particular LMP program used for
this purpose in a given domain is known as a declarative role
composition map or role map. The resulting role maps may be
read as abstracted descriptions of a role-based model of the
domain in question. Note that this use of LMP has no connection
with the composition rules of Ossher et al. [17]. The associated
method code describing detailed behaviour is typically relatively
less complicated than code that has to deal explicitly with

composition relationships. A system of aliases loosely
equivalent to directed resends in Self are used as a mechanism
for composing behaviour.

For fully expressive role-modeling power in arbitrary
domains, it is not enough to have the capacity to model a single
role hierarchy at a time – it is necessary to be able to model role
polyarchies – arbitrarily overlapping hierarchies with role nodes
or subtrees of roles in common. Declarative role composition
maps of the kind noted above make directed acyclic graphs of
this kind relatively straightforward to model in a disciplined
way. In particular, it is straightforward to control sharing and
replication in composed structures with an arbitrarily fine
granularity. The ability to model role polyarchies directly,
coupled with the logic meta-programming approach to
composition relationships give Reflective Composition two
interesting properties. Firstly, these properties allow code
redundancy to be reduced, in principle, to a minimum. In fact,
depending on the definition of code redundancy used, there does
not seem to be any obvious theoretical limit to the removal of
redundancy using this approach. Secondly, because the LMP
control of composition relationships allows overlapping role
hierarchies to be effectively switched on and off, this provides a
relatively simple and straightforward way of implementing
declaratively quantified aspect oriented programming[18]. With
this perspective, it becomes reasonable to think of the terms role
and aspect as interchangeable for many purposes, without any
‘tyranny of the primary decomposition’.

An implementation of Reflective Composition is
noted, and various applications that have been modeled in this
implementation are considered. Related approaches are noted.

2. ACKNOWLEDGMENTS
The work reported here is based on, and aims to continue, the
work of the late Henrik Gedenryd on this approach to object
organization [19]. Thanks to Henrik Gedenryd for numerous
discussions about his work. Thanks to Kris Gybels and Benedict
Heal for very useful questions and observations. Thanks to
Michael Jackson, Bashar Nuseibeh, Leonor Barroca, Robin
Laney and Patrick Hill for generous and useful comments.

3. REFERENCES

[1] Reenskaug, T., Working with Objects: The OORAM

Software Engineering Method. 1995, Greenwich,
Connecticut: Manning Publications Co. 420.

[2] Taivalsaari, A., On the notion of Inheritance. ACM
Computing Surveys, 1996. 28(3): p. 438-479.

[3] Steimann, F., On the Representation of Roles in Object
Oriented and Conceptual Modelling. Data & Knowledge
Engineering, 2000. 35(1): p. 83-106.

[4] Lieberman, H., Using prototypical objects to implement
shared behaviour in object-oriented systems. SIGPLAN
Notices, 1986. 21(11): p. 214-223.

[5] Ungar, D. and R.B. Smith, Self, the Power of Simplicity.
Lisp and Symbolic Computation, 1991. 4(3): p. 45-55.

[6] Scharli, N., et al. Traits: Decomposable Units of Behaviour.
in ECOOP 2003 European Conference on Object-Oriented
Programming. 2003: Springer Verlag.

[7] Smith, R.B. and D. Ungar, A Simple and Unifying
Approach to Subjective Objects. Theory and Practice of
Object Systems, 1996. 2(3): p. 161-178.

[8] Chambers, C., et al., Parents are shared parts of Objects:
Inheritance and encapsulation in Self. Lisp and Symbolic
Computation, 1991. 4(3): p. 207-222.

[9] Kendall, E.A., Role Model Designs and Implementations
with Aspect Orineted Programming. OOPSLA, 1999.

[10] Eco, E., The search for the perfect language (Ricerca della
lingua netta cultura europa). 1995, Oxford: Blackwell.

[11] Bardou, D. and C. Dony, Split Objects: a disciplined use of
delegation within objects. ACM SIGPLAN Notices -
Proceedings of 11th ACM Sigplan Conference on Object-
oriented programming, Systems, Languages and
Applications, 1996. 31(10): p. 122-137.

[12] Gottlob, G., M. Schrefl, and B. Rock, Extending object-
oriented systems with roles. ACM Transaction on
Information Systems, 1996. 14(3): p. 268-296.

[13] Gybels, K., Using a logic language to express cross-cutting
through dynamic joinpoints. Proceedings of Second
German Workshop on Aspect-Oriented Software
Development. Technical Report IAI-TR-2002-1, 2002.

[14] Czarnecki, K. and U. Eisenecker, Generative Programming:
Methods Techniques and Applications. 1999, Addison
Wesley: Reading, MA.

[15] Lopez, C.V. and W.L. Hursch, Separation of Concerns.
College of Computer Science, NorthEastern University,
Boston, MA., 1995.

[16] Filman, R.E. and D.P. Friedman. Aspect Oriented
Programming is Quantification and Obliviousness. in
Workshop on Advanced Separation of Concerns, OOPSLA
2000. 2000. Minneapolis.

[17] Ossher, H., et al., Subject-Orineted Composition Rules.
OOPSLA 95 ACM SIGPLAN, 1995. 30(10): p. 235-250.

[18] Kiczales, K. Aspect Oriented Programming. in ECOOP 97
Proceedings of European Conference on Object Oriented
Programming. 1997: Springer Verlag.

[19] Gedenryd, H., Beyond Inheritance, Aspects and Roles: A
unified Scheme for Object and Program Composition.
Department of Computing, Open University Technical
Report TR 2002/09, 2002.

[20] Gedenryd, H., Holland S. and Morse, D.R. Meeting the
Software Engineering Challenges of Interacting with
Dynamic and Ad-hoc Computing Environments.
Department of Computing, Open University Technical
Report TR 2002/08, 2002.

