
Simon Holland
This paper appeared as Holland S. (2004) A First Empirical Study of Direct Combination in a Ubiquitous Environment. In (Eds.) Sally Fincher, Panos Markopoulos, David J. Moore, Roy A. Ruddle, People and Computers - XVIII - Design for Life, Proceedings of Human Computer Interaction 2004, vol. XVIII Springer Verlag, pp 229 – 247. ISBN 1-85233-900-4.

Simon Holland

Simon Holland

Simon Holland

Simon Holland

A First Empirical Study of Direct
Combination in a Ubiquitous Environment

Simon Holland

Department of Computing, The Open University, Milton
Keynes MK7 6AA, UK
Tel: +44 1908 653148
Email: s.holland@open.ac.uk

In dynamic ubiquitous environments, end users may need to create services
by causing two or more devices or resources to interoperate together in ad-
hoc circumstances. In general, users can find this kind of process hard to
manage. At the same time, existing UI architectures are not well suited to
supporting such activities. It is proposed that a good basis for addressing
these and related problems in a principled, scaleable way is the principle
of Direct Combination (DC). The principle is summarized, and analytical
arguments are presented that predict that DC can reduce the amount of
search required by the user. Other things being equal, such a reduction
in search would be expected to offer interactions which are faster, less
frustrating, and impose less mental load on the user. We present a proof-
of-concept implementation, and a small-scale evaluation of a DC interface.
Within the limitations of a preliminary evaluation, consistent support is
offered across several measures for the analytical predictions.

Keywords: ubiquitous computing, handheld devices, mobile computing,
input technologies, interaction technologies, interaction theory,
interaction design, interaction principles, interaction frameworks.

1 Introduction and Problem
In ubiquitous environments, networked devices on the person and in artefacts,
vehicles and surroundings, will be cheap, plentiful and richly distributed. In such
environments, there will be numerous opportunities for end users to access, or to
dynamically create, services of interest by causing two or more devices or resources
to interoperate together, often under ad-hoc circumstances [Banavar et al. 2000;

Simon Holland

Simon Holland

Simon Holland

Simon Holland

Simon Holland

2 Simon Holland

Edwards & Grinter 2001; Newman et al. 2002]. A very simple, non-problematic
example is that a user with a PDA in an unfamiliar place might wish to show another
user a document on a nearby screen. In general, users find impromptu inter-operation
of two or more resources hard to manage [Edwards & Grinter 2001; Kristoffersen &
Ljungberg 2000]. Existing programming architectures tend make this kind of task
inconvenient [Banavar et al. 2000; Winograd 2001] since the necessary functionality
is generally controlled via device-centric application programs [Banavar et al. 2000].
These cannot easily organize the huge number of possible interactions, making it
difficult for end users to cope [Banavar et al. 2000; Kristoffersen & Ljungberg 2000].
Whenever three or more distinct resources are involved, the problems for users
multiply combinatorially. Consequently, such tasks often involve the user in non-
trivial searches of the user interface. The problems are particularly acute when the
search is performed on the move via mobile devices with small, resource-poor user
interfaces. Typically users are forced to spend time and attention distracted from
their main task, searching a sequence of screens and menus [Holland et al. 2002].
The problem of supporting inter-operation in changing circumstances, especially in
ubiquitous systems, is called the problem of spontaneous interaction. There are few,
if any, interaction techniques well suited to spontaneous interaction. Approaches
are needed that allow the user to specify what they want as simply and directly
as possible, while at the same time taking full advantage of machine-mediated
knowledge.

2 Proposed Solution
We propose that a good principled basis for addressing this and related problems
is the principle of Direct Combination [Holland & Oppenheim 1999; Holland et al.
2002]. We will argue that Direct Combination allows the user interface to be made
highly economical, and the amount of search required by the user to be reduced.
The principle of Direct Combination, with its associated interaction techniques and
architecture is perhaps best introduced by means of an example. For reasons of
memorability we will use an imaginary interaction scenario borrowed from Holland
et al. [2002] featuring a magic wand. Binsted [2000] has argued that imagined magic
is a valuable tool when designing or analysing innovative interaction technologies.
More realistic scenarios will be presented below. Harry raised his wand towards the
menacingly advancing Gator1 and tried to remember the spell for turning it into
something harmless. It was no good; he just couldn’t remember the right spell
. . . Problems of this sort with magic wands are common in fiction and folklore.
For example, the story of the Sorcerer’s Apprentice deals with an inexperienced
wizard who has memorized enough commands to start a process, but does not
know, or cannot recall, the commands needed to control or stop it. Harry suddenly
remembered that this was a Direct Combination Wand. He wouldn’t need to recall
the spell. Quickly looking around, Harry noticed a small stone on the floor. Pointing
the wand at the Gator, Harry selected it, and then made a second select gesture at the
stone. A glowing list next to the wand presented the two available actions applicable
to this particular pair of things: propel the stone at the Gator and turn the Gator into

1An imaginary monster, normally docile, but occasionally dangerous.

A First Empirical Study of Direct Combination in a Ubiquitous Environment 3

stone. Gratefully Harry activated the second command and the Gator froze into grey
immobility. The key principle of Direct Combination (DC), as illustrated by the above
scenario, is that if the user is allowed to indicate in advance two or more interaction
objects involved in an intended action, then, given a supporting architecture, the
system can use this information to constrain significantly the search space of possible
commands. This allows the system to present to the user a space of focused relevant
options to choose from, instead of the unrestricted space of commands. Some
terminology is worth introducing at this point: interactions involving a pair of objects
are known as pairwise interactions. This pattern with two interaction objects is
particularly useful, but zero or more objects are the general DC case. Cases that
involve selecting a single object are known as unary interactions, and cases with three
or more objects are known as n-fold interactions. Direct Combination encompasses
all of these as special cases within a single uniform framework. Note that any
potential difficulties, in some situations, with physical pointing for accurate selection
of items, are no barrier to DC; the principle works just as well if objects are identified
in any other way, e.g. by speech or by selection from a resource discovery menu.

3 The Direct Combination Principle
In practical terms, viewed from the point of view of the user, the principle of Direct
Combination [Holland & Oppenheim 1999; Holland et al. 2002] can be stated as
follows:

The user interface must always permit the user to select zero, one, two, three
or more objects (before the user is obliged to choose any action).

The interface must immediately display the actions that apply to that
particular collection of objects.

Note that under this principle the user is not obliged to specify one or more
nouns before verbs — it is just that this is always possible. The principle of
subsumption [Holland & Oppenheim 1999; Holland et al. 2002] requires that DC
should always include conventional interaction patterns as special cases — as
illustrated below. To be scaleable and maintainable, appropriate supporting software
architecture and analysis methods are required; both of which requirements now have
well-founded solutions. These aspects are briefly touched on below, but are outside
the scope of this paper. Although DC is at root a very simple idea, it has far reaching
consequences.

4 The Domain
The domain of the evaluation is a simulated ubiquitous environment, accessible via a
user interface (Figure 1) running on a laptop controlling a model of the environment.
In a fully realized environment, and in earlier work [Holland et al. 2002], users may
select physical objects in the environment by pointing at them physically with a
remote ID reader built into a PDA or wand: remote or virtual objects are selected by
selecting items on-screen on the PDA/wand. For the evaluation, all selection is done
by choosing from menus on a simulated PDA running on the laptop. A wide range

4 Simon Holland

Figure 1: The interface used for the evaluation. For purposes of comparison, Direct Combination (DC)
can be switched off. This does not change the appearance of the interface, but restricts its behaviour. DC
behaviour always supports not only DC interactions but also conventional interactions (see Section 3).
The panes places, people and sub-locations are unused in this study. For reasons of space, the fi gure has
been cropped at the bottom, but this removes no functional detail.

of objects are available in the simulated environment, including wall screens, radios,
PDAs, doors, houses, clocks, printers, room lights, cameras, central heating, cars,
and text files. Each type of simulated object supports appropriate behaviours and
states. Simulated outcomes in the environment are detailed in dialogue boxes. Given
our interest in interactions that may involve arranging for two or more objects to
work together (some possibly remote), the objects in the simulation are drawn from
a range of locations including a residence, a place of work, and outdoors (Figure 1).
Note that DC does not apply merely to physical devices — it applies equally well
to arbitrary combinations of physical objects, virtual objects, remote objects, and
subparts of objects.

5 A Prototype Direct Combination User Interface
The user interface has been implemented to work in two modes, Direct Combination
mode, and a reference mode that excludes DC (called for brevity ‘non-DC mode’).
In the reference mode the interface behaves conventionally, just like most typical
user interfaces. Loosely speaking, non-DC mode is as follows: the user may select
a single object; this elicits a list of relevant actions; the user may then choose an
action from a list, and execute it; this may achieve the task, or it may cause a
dialogue box to be opened, so that additional arguments can be provided. Of course,
many conventional user interfaces have additional behaviours, such as allowing a
collection of objects to be selected, thus permitting the same command to be issued
to all objects in the collection; or cut and paste; and also drag and drop. However,
all of these behaviours have analogues in DC [Holland & Oppenheim 1999; Holland
et al. 2002], hence for simplicity and clarity of comparison these behaviours were

A First Empirical Study of Direct Combination in a Ubiquitous Environment 5

not included in the evaluation for either condition. In Direct Combination mode, the
user interface appears and behaves essentially identically to the reference mode, but
has a single systematic additional behaviour to make it conform to the DC principle:
namely, the user may at any time select 0, 1, 2, 3 or more objects of interest. The
system then shows a list of actions relevant to that particular combination of object
types. As in the non-DC case, the user may select any action and execute it: a
dialogue box may request additional arguments. This sole behavioural difference
is supported by differences in the software architecture ‘under the hood’, but these
differences are invisible to the user.

6 Analytical Arguments about the Predicted Benefits of Direct
Combination

It is useful to consider some analytical arguments about the expected benefits of
Direct Combination. Given a complete enumeration of the options offered to a user
by a given user interface(s) in a given environment and circumstances, an abstract
tree representation of the space of user commands available can be constructed. In
practice, many factors will affect the user’s search space, but, given appropriate
assumptions about the user, task, and situation, this can be used as the basis of a
formal model of the user’s search space. Such models can be used to estimate the
extent to which Direct Combination can reduce the user’s search space compared
with conventional restricted command patterns, under various assumptions. Here,
we will informally outline three general cases in which DC is expected to reduce the
search space, and note two other benefits newly identified from this study:

Whenever a single object implements a large number of commands, if DC is
not available, the user is liable to have a large search space of commands. If
the user already knows one or more objects involved in the interaction, DC can
be used to shrink the search space simply, rapidly and appropriately.

In a conventional interface, whenever choosing from actions involving two
or more objects, the user must typically select at least one object in a
dialogue box. This dialogue box both restricts the user’s freedom [Holland
& Oppenheim 1999], and introduces new visual elements, making new non-
task related demands on the user. Such a step is typically eliminated in the DC
case.

Whenever three or more principal objects are involved in a desired interaction,
the combined search space of actions for all three objects considered
individually is liable to be large. DC turns the tables to make this
combinatorial explosion work in the user’s favour. The objects selected
reduce the search space to relevant commands only. This is DC’s hallmark: a
combinatorial implosion of the search space, dramatically reducing cognitive
load for the user.

Sometimes, a task that can be achieved using three or more objects happens not
to be implemented as a single integrated command by any one of the objects.

6 Simon Holland

Consequently a sequence of actions may need to be composed by the user.
This can be difficult for users to manage using conventional application-centric
approaches. DC interfaces provide a straightforward way for users to access
such behaviour in a single step, by simply selecting the relevant objects (see
Task 3 below).

In situations where objects may be capable of interacting in diverse ways with
a wide range of other object types, including some that may not have existed
when the object was designed, user interfaces would become cluttered and
time consuming to search if they dealt explicitly with all possible interactions
— and would need continual upgrading to cope with new kinds of interactions.
Third party integrative tools are one important way around this problem. The
essential idea is that if needed functionality for some class of spontaneous
interactions is not available in the user interfaces of any of the relevant devices,
a third party tool may be able to afford those interactions.

However, this puts an additional load on non-DC users to know what general-
purpose tools are available, what they are called, what they can do, and when they
are applicable. By contrast, the role model servers used for DC interactions allow
users to benefit from such tools without needing any knowledge of their existence
(Tasks 5 and 6), simply by selecting the relevant objects. Automatic use of third
party integrative tools can easily be incorporated into DC role model descriptions.

7 The Evaluation
This was the first empirical evaluation of Direct Combination applied to ubiquitous
computing, and was deliberately kept small scale, since it was unknown what might
happen with users who had never used this new interaction technique before.

7.1 Assumptions About Subjects
The evaluation required that all subjects should:

1. Be familiar with the use of conventional user interfaces.

2. Be familiar with minimal assumptions about an imagined simulated world of
ubiquitous computing, as envisaged by Weiser [1991], namely that more or
less every object is networked; that a PDA or wand can be used to identify and
control such objects, locally and remotely.

3. Have exposure to the fundamental idea or principle of DC user interfaces, e.g.
as expressed in a few sentences.

4. Have heard one or two short stories or scenarios to make the idea memorable.

7.2 Subjects
After two pilot runs with solo users, eight subjects (four pairs of two, to promote
think-aloud) were used in the evaluation. The eight subjects were chosen from a pool
of about one hundred potential subjects. Within this pool, subjects were recruited
opportunistically. They had a variety of kinds of computing experience and level of

A First Empirical Study of Direct Combination in a Ubiquitous Environment 7

education. In order to ensure that all subjects met assumptions 2–4, they were given
three sheets to read, as noted in the protocol. All of the subjects except two were
male. Three were computer scientists without particular knowledge of HCI. Another
was an HCI researcher. Two were secretarial staff with good office computing
skills. Two users were non-technically educated schoolchildren (one aged 12 and
one aged 17). Both had experience of computer games and word processing, but
no particular computing expertise. Two of the computer scientists had heard oral
descriptions of Direct Combination at an abstract level. None of the subjects had
ever seen or used a Direct Combination interface.

7.3 Tasks
The tasks were drawn from a wide range of actions possible in the simulated
environment:

1. Pipe sound from the Office Radio to myPDA.

2. Display time from the Room Clock onto aWallscreen.

3. Pipe sound from myPDA onto the Car Radio.

4. Get Teddy to vocalize a TextFile over the Car Radio.

5. Arrange it so that if the Front Door opens, the Room Light flickers.

6. Arrange it so that when SJH’s Car gets closer than 15 miles to Home, the Room
Heating is turned on.

For details of how to complete the tasks using DC vs. non-DC, see Section 7.7.

7.4 Data Collection
Users were observed (with sound recorded, and the screen video-recorded) while
carrying out a series of tasks and thinking aloud in pairs. Times taken to complete
the tasks were recorded, and whether the task was completed or not. After each
task, each subject was asked to grade the task according to mental demand, effort,
frustration, and three other dimensions, using the NASA TLX human workload index
[Hart & Staveland 1988]. After completing the evaluation, users filled in a short
questionnaire (see Figure 2). The video log was analysed to catalogue all user actions
and significant comments.

7.5 Training
In order to ensure all subject met assumptions 2–4, subjects were given three sheets
to read before the start of each evaluation, each requiring about a minute to read.
The first sheet explained that the evaluation takes place in an imagined ubiquitous
environment, where every object of interest in the environment is wireless networked
and remotely accessible. The second sheet explained that there were two versions of
the user interface, and that with one version, only a single object could be selected
at a time, whereas with the other version several objects could be selected at once: it
was explained that with this version of the interface, when more than one object was
involved in a task, selecting more than one object was generally advisable. The third

8 Simon Holland

Direct Combination applied to user interfaces tends to:
Disagree
Strongly

Disagree Disagree
Weakly

Neutral Agree
Weakly

Agree Agree
Strongly

reduce the degree of search required to carry out tasks 1 2 1 4
reduce the amount of time required to carry out tasks 1 1 4 2
reduce the amount of attention required to carry out tasks 2 1 4
reduce the amount of work required to carry out tasks 2 4 1
reduce the amount of frustration in carrying out tasks 1 2 2 2
lessen the need for memorisation in carrying out tasks 1 2 4 1
lessen the demands of interface navigation 1 1 1 4 1
reduce the amount of stress involved in carrying out tasks 1 1 1 4 1

Figure 2: Subjective questionnaire response, showing number of subjects giving each answer. Modal
(most popular) answers are highlighted.

sheet included the Harry Potter scenario and one other scenario, to make the idea
memorable. Before starting to perform tasks on either version of the interface, users
were read a short scripted screen tour, describing the function of the different panes
of the interface, accompanied by the evaluator pointing at the panes in question. No
demonstration of the operation of either version was given. The scripted oral screen-
tour told users:

what pane to use to select simulated objects;

what pane to use to see the objects selected; and

what pane to use to select relevant commands.

Part of the screen tour varied depending on the version of the interface about to
be used (DC vs. Reference), as follows.
7.5.1 Screen Tour for Reference Condition
Users were told that only a single object could be selected from the selection pane
at a time. They were also told that in cases where none of the objects individually
appeared to be able to carry out the tasks, it might be necessary to use a general-
purpose tool. Users were shown the labelled pane where general-purpose tools can
be selected. Finally users were told that it may be necessary to use an object they
created in an earlier step in order to carry out some tasks, and are told where such
objects can be selected (in the pane labelled ‘recent items’). Users were told that
they could ignore all other panes and controls.
7.5.2 Screen Tour for DC Condition
Users were told that more than one object could be selected at once, and that actions
relevant to that particular collection of objects would then be displayed. They were
also told how to clear selected objects using the clear buttons. Users were told that
they could ignore all other panes and controls. (The panes places, people and sub
locations are unused in this study.)

7.6 Protocol
Each pair was asked to carry out the same set of six tasks twice: using first one, then
the other version of the interface. To allow for learning and interference effects, half

A First Empirical Study of Direct Combination in a Ubiquitous Environment 9

Figure 3: Using Direct Combination. The Room Clock and Wall Screen are both selected (Task 2). Only
actions tailored to that particular set of objects are then displayed. To save space, this fi gure shows just
the relevantly different part of the full interface seen in Figure 1.

of the groups used the DC version first and half used the reference interface first. The
protocol followed the methodology of Lewis & Reiman [1993]. Users were asked
to think out loud to say what they were trying to do next, what they were looking
for, what they were uncertain about, etc. After the introductory scripted protocol,
the experimenter said as little as possible, except to encourage thinking aloud— any
departures from this were recorded. Each task was presented on a new sheet of paper.
Tasks were phrased exactly as listed in Section 7.3. After each task was completed,
or the subjects gave up, each user was asked to grade each task according to mental
demand, effort, frustration, and three dimensions, using the NASA Task Load Index
(TLX) [Hart & Staveland 1988]. After both conditions had been completed, subjects
were asked to fill in a brief questionnaire (Figure 2).

7.7 Contrasting DC vs. Conventional Interaction
The next section contrasts how tasks can be completed using DC vs. non-DC. To
make use of the available figures, we start with Task 2.

Task 2. In DC mode the user may select the Room Clock and the Wall Screen
before having to specify any action (Figure 3). The system then shows
a relatively brief list of actions relevant to that particular combination of
objects types. The user selects the action ‘Pipe video from RoomClock to
WallScreen’. On pressing ‘Do it’, a dialogue box is displayed indicating
that video is being piped from the Room Clock to the Wall Screen. Note
that, following the principle of subsumption, it is also possible to use the
DC interface to complete the task using exactly the same steps as with
the conventional interface, itemized next.

In non-DC mode the user selects the RoomClock, and then selects the action
‘Pipe video from RoomClock to [a Video Renderer]’ (see Figure 1). On
pressing ‘Do it’, the user is presented with a dialogue box allowing
selection of a Video Renderer— in this case theWallScreen. On pressing

10 Simon Holland

‘Do it’ in the dialogue box, a new dialogue box is displayed indicating
that video is being piped from the Room Clock to the Wall Screen.

Tasks 1 and 3 are isomorphic in command pattern to Task 2.

Task 4 No single object has enough functionality to be able to complete this task.
Two actions must be composed. (Given simple provisos, DC can compose this
on the fly, even with objects types not explicitly considered before.)

In DC mode the user selects the teddy, the text file and the car radio. The
user then selects the option: ’Vocalize a text file using a teddy via a car
radio’.

In Non-DC mode the user selects the teddy, then chooses the action ‘Vocalize
[a vocalizable] using a teddy’. On selecting and executing this action, a
dialogue box is opened allowing the text file to be chosen as argument.
A dialogue box is then displayed showing that the teddy is vocalizing the
text file. (Recall that no single object supports the UI functionality to
complete the task in a single step.)
The user now selects the teddy again, and chooses the action ‘Pipe sound
from Teddy to [a Sound Outputer]’. A dialogue box is opened allowing
the car radio to be chosen. A dialogue box is then displayed showing
that the teddy is outputting sound via the car radio. This completes the
task.

Task 5 Again, no single object has enough functionality to allow the task to be
performed using a single command. But in this case, there is not even a
composition of interactions associated with any objects that could complete
the task. A general-purpose tool (here the stimulus response tool) must be
found and used, as detailed below. (Once more, DC can compose the complete
interaction on the fly, even if the particular object types and tools have never
been considered together before, and even if the tools are unknown to the
participating objects.)

In DC mode the user selects the front door and the Room light. From the
few choices, the user selects the option: ‘Program stimulus response
from Front door to room light’. A dialogue box is opened to allow a
stimulus to be chosen from those offered by the door (e.g. open, close,
lock, unlock), and another dialogue box to allow a response to be chosen
from the room light (e.g. on, off, flicker).

In Non-DC mode given that the neither object has the functionality or UI
to complete the task, and given that neither object knows about the
existence of the third party tool (which may have been designed after
both objects were created), the user must select the stimulus response tool
(see Section 7.5 Screen tour for DC condition; and Figure 1, the Tools
pane). Selecting this tool opens a single dialogue box, which allows all
necessary arguments to be selected (the stimulus and the response). The

A First Empirical Study of Direct Combination in a Ubiquitous Environment 11

user selects the Front door as the stimulus source and the Room Light
as the stimulus responder. A new dialogue box is opened to allow the
correct stimulus to be chosen for the door, and another dialogue box to
allow the correct response to be chosen for the room light. This task may
seem a little hard, but was deliberately chosen as an example of the class
of problem noted under Item 5 in Section 6. Such situations are common
in spontaneous interactions. It is much more easily handled using DC,
but it is one of the advantages of DC that it collapses the search space for
this kind of problem so decisively.

Task 6 This task requires not just one, but two general-purpose tools whose
functionality must be composed. This is similar to Task 6 but more complex.
This task was chosen as an example of a class of spontaneous interactionwhere
both Situations 4 and 5 described in Section 6 are composed.

In DC mode the user simply selects the car, the house and the central
heating, and then uses dialogue boxes as directed to program the details
of the condition and response.

In non-DC mode the solution is similar to that of Task 5, but both a Distance
Monitor and a Stimulus response tool are required (see Section 7.5,
screen tour for DC condition, and Figure 1, the Tools pane).

8 Results
The evaluation was preliminary and small scale. However, the combination of
measures used (four NASA TLX measures, task completion times, whether tasks
could be completed or not, and the questionnaire) allowed some triangulation of
results. Figure 4 shows the Mental Load of the subjects as measured on a 20-point
scale by the NASA TLX [Hart & Staveland 1988], averaged over all eight subjects,
in the DC condition compared with the non-DC condition, for the six tasks. As
Figure 4 shows, the Mental Load for the non-DC condition was measured to be
bigger for all of the six tasks. Figures 5 & 6 show the same information for Effort
and Frustration as measured by the NASA TLX. Both Effort and Frustration were
measured to be greater in the reference condition than in the DC condition for all
of the six tasks. This is also true of the NASA TLX results for Physical Load and
Temporal Load (not shown). Figure 7 shows the actual time taken to complete each
task (or until the participants abandoned the task). The time taken, averaged over
all subjects, was longer for the non-DC condition than the DC condition for each
of the six tasks. Given the think aloud nature of the evaluation, time taken must be
treated with caution, but, within the limits of a preliminary study, it gives a useful
indication. All of the subjects completed all tasks in the DC condition, but in the
non-DC condition, two subjects gave up on one task, and two subjects gave up on
two tasks. In the questionnaire (Figure 2), seven of the eight subjects rated the DC
condition favourably, or at worse, neutrally on all of the questions asked.

12 Simon Holland

Figure 4: Mental Load for DC vs. non-DC, on a 20-point scale, as measured by the NASA TLX (averaged
over all subjects) for Tasks 1–6. DC scores are shown in the darker shade.

Figure 5: Effort for DC vs. Non-DC, on a 20-point scale, as measured by the NASA TLX. Average
ratings over all subjects for Tasks 1–6. DC scores are shown in darker shade.

Figure 6: Frustration for DC vs. non-DC as measured on a 20-point scale by NASA TLX (average ratings
for all subjects) for Tasks 1–6. DC scores are shown in the darker shade.

A First Empirical Study of Direct Combination in a Ubiquitous Environment 13

Figure 7: Time in minutes and seconds to complete tasks for DC vs. non-DC. Averages for all subjects
shown for Tasks 1–6. (Max time about 11 minutes). DC in darker shade.

8.1 Effect of Order of Presentation
As already noted, half of the subjects encountered the DC condition first, and half
encountered the non-DC condition first. Irrespective of the order of presentation,
averaged over all tasks, all subjects rated the DC tasks on the NASA TLX scale as
having a lighter workload than the non-DC tasks for: mental load, effort, frustration,
physical load and temporal load. Similarly, averaged over all tasks, all subjects
performed the tasks faster on the DC than on the reference interface. However, the
order of presentation did affect the degree of out-performance of DC over non-DC
differently for different measures and different tasks.

9 Interpretation

9.1 Principal Findings
This is the first empirical evaluation of a DC interface applied to ubiquitous
computing, so we were unsure what user behaviour might be found. Consequently
the use of a small-scale evaluation was chosen. One problem is that eight subjects
are not enough for reliable statistical evidence. Also, think-aloud activity, though
useful here (see Section 10.3 confounds precise timing data. Consequently, we must
forgo any precise claims about timing. However, the timing data overwhelmingly
favoured DC (Figure 7), even though no user had ever used it before — which
might be expected to handicap DC. Given that all of the several data sources yielded
similar stories, we claim that, within the limits of a preliminary evaluation, the study
gives useful information. On the basis of the results from the various NASA TLX
dimensions, the timing data, the completion data, the order of presentation analysis,
and the questionnaire, there is consistent evidence, within the limitations of an initial
study, that Direct Combination has the capacity to offer interactions which are faster,
less effort, less frustrating, and impose less mental load on the user. There was
support for all of the analytical predictions (Section 6).

14 Simon Holland

9.2 Order of Presentation
The above findings held true irrespective of order of presentation, although the
degree of difference of the various measures varied with the order of presentation.
However, the degree and direction of variation was inconsistent across the various
different measures, so that it is hard to draw firm conclusions about this variation.

9.3 Direct Combination and Task Complexity
Unlike in non-DC, on average the more complex Task 4 was completed in the DC
condition in similar times to the simpler Tasks 1–3. Even Tasks 5 and 6 did not
take much longer than Task 1 in the DC case, even though both conditions involved
the same dialogue boxes for setting up trigger distances and stimulus responses.
DC comfortably outperforms non-DC even for the three simple Tasks 1–3, although
performance with non-DC does appear to improve over the course of these tasks.

9.4 Learning to Use Direct Combination
Given that all subjects had hundreds of hours of experience with conventional user
interfaces, which work more or less exactly like the reference interface, and no
experience at all of a DC interface, it was not clear in advance that users would
find DC easy to use or quick to learn, especially since users had only about two or
three minutes of introduction to DC. However the results demonstrate, as did direct
observation, that learning to use a DC interface was almost instant.

10 Alternative Interpretations and Limitations
10.1 Minor Inconsistencies: Questionnaire Results
In the questionnaire, one subject (the HCI researcher) had evaluated DC negatively
on several measures (Figure 2), even though, in the NASA TLX, he consistently rated
the DC condition better for each task. The key to this apparent self-contradiction
was identified when we asked this subject what his responses would have been to the
questionnaire with negated versions the questions, i.e. asking about the effect of “the
exclusion of Direct Combination from user interfaces”. Surprisingly, the negated
versions of the questions elicited exactly the same responses, except for the question
about memorization. The subject agreed that the tasks had been easier, quicker, and
less stressful, etc. using DC: his negative responses were not about DC per se, but
reflected his scepticism about any general statements about interaction techniques.
Despite systematic scepticism about general claims for any interaction style, this
subject actively supported the view that Direct Combination tends to lessen the need
for memorization (Figure 2).

10.2 Minor Anomalies: Workload in First Tasks
On all of the workload measures, Task 2 in the DC condition shows a higher load
than Tasks 1 and 3, despite the fact that Tasks 1–3 are identical in command structure.
There was an accidental ambiguity in the written phrasing of Task 2, which caused
all subjects in both conditions to be unclear which of two similar actions best fitted
this task. The additional time taken in Task 2 compared with Task 1 is accounted for
in the video log by time exploring which of the two actions better satisfied the task.

A First Empirical Study of Direct Combination in a Ubiquitous Environment 15

This was observed in both conditions, but in the non-DC condition, the effects seem
masked by other factors, possibly learning effects.

10.3 Usability Issues
An earlier heuristic review had removed as many usability problems as possible in
both conditions. Because the DC interactions are relatively simple and undemanding
on the user interface, most of this earlier improvement effort had focused on the non-
DC version of the interface. For example: care was taken with non-DC to avoid a
sequence of dialogue boxes where a single combined dialogue box could be used;
a ‘show matches only’ feature was added; and the number of general purpose tools
was reduced to only those needed for the tasks, plus a single distractor. Despite this,
the think-aloud element of the present study picked up numerous small usability
features that could be improved for both conditions equally: for example, the work
flow could have been better organized left to right, and some of the ‘success’ dialogue
boxes were insufficiently detailed. Three of these issues may have affected the non-
DC side more than the DC side: actions were not categorized; the ‘show matches
only’ feature for selecting arguments in dialogue boxes was not set as the default
mode; and the general purpose tools could have been more clearly named. However,
study of the video log together with a simple analytical argument (below) suggests
that these issues made little material difference. Firstly, the video log suggests that
setting ‘showmatches only’ as default could have had only a small impact on overall
timings. Similarly, although some of the users expressed confusion about the names
of the general-purpose tools, there was no such confusion on the part of other users,
and yet there was no material difference in the outcomes. Finally, the first argument
in the analytical predictions section shows that simple categorization of actions is
soon outrun by a combinatorial explosion of possible object interactions — so that
action categorization can help non-DC interactions only to a limited degree.

11 Other Issues
In previous studies, the question was raised whether DC would transfer workload
from the user to the domain analyst and maintainer [Holland & Oppenheim 1999;
Holland et al. 2002]. There were also at that time technical difficulties with n-fold
combination. Although outside the scope this paper, it is worth noting that two
innovations, the use of a role-based architecture, and the use of computationally
explicit role models, as used in the current implementation give well-founded
solutions for both concerns. The architecture appears scaleable, flexible and
potentially well suited to distributed use. Various issues have been identified that
must be addressed for the general applicability of any user interaction techniques in
ubiquitous domains (not just DC) [Edwards & Grinter 2001; Bellotti et al. 2002].
These issues include security, resource discovery, feedback, monitoring of tasks
in progress, and cancelling. We have implemented crude prototype facilities for
monitoring of tasks in progress and cancelling, but for simplicity these facilities were
hidden for the purposes of evaluation. Note that this is a completely new architecture
compared with Holland & Oppenheim [1999] and (with sound n-fold combination)
a leap beyond Holland et al. [2002]. As regards scalability, DC places no burdens

16 Simon Holland

on distributed objects beyond those typical for Ubiquitous Computing. i.e. simply to
identify their class or identity, and to respond to commands. Similarly, only a very
simple client is required on the user devices; all of the heavy lifting can be done
by DC servers. Also, because of the use of reflective descriptions, server requests
require only modest bandwidth (not complete descriptions of objects).

12 Related Work
The Direct Combination principle may be viewed as generalizing and extending
diverse existing user interaction approaches in a parsimonious, elegant way. Use of
pointing devices to transfer information between computers or other devices is well
established. For example, Pick-and-Drop [Kohtake et al. 1999; Rekimoto 1997] is
an extension of Drag & Drop used to copy data between multiple devices via passive
pens with IDs. Direct Combination may be viewed in turn as an extension of Pick
and Drop, but one that offers far greater flexibility and expressiveness. Similarly,
the InfoStick [Kohtake et al. 1999] is an interaction device for inter-appliance
computing. It may be used to pick up and store information items between devices.
The InfoStick effectively offers a limited special case of Direct Combination where
the only available operations are get and put. Previous work on ad-hoc configuration
includes the Proem project, which aimed to provide infrastructure for building
special-purpose ad-hoc collaboration applications [Kortuem 2002]. The Aura
software architecture [Sousa & Garlan 2002] also addresses dynamically changing
resources, but it centres on technical challenges, whereas our concern is on the level
of user interaction. The tangible computing system DataTiles [Rekimoto et al. 2001]
uses tagged transparent tiles placed on a flat display. Interactions between any two
tiles are effected by physical adjacency, or by a pen gesture. The kind of interaction
is determined by the tile types, although a pen gesture may be used for limited
modifications. However, the affordances are very limited — physical adjacency
determines a single interaction type. DataTiles could be given greater flexibility
and power, without loss of elegance, by applying the Direct Combination principle.
Alternatively, DC may be viewed as a novel way of exploiting a relational approach
[Ullmer & Ishii 2000] to Tangible User Interface design, systematically allowing the
selection of multiple objects to determine dynamically bindings between objects and
computational operations. Other systems with related goals, but different approaches
include Recombinant Computing [Edwards et al. 2002], and the iRoom tuple-space
approach [Borchers et al. 2002]. DC relates strongly to Direct Manipulation (DM):
parts of DC may be viewed as generalizations or specializations of DM, though the
relationship is complex.

13 Conclusion
Direct Combination is a new user interaction principle. Fragmentary, isolated
examples of DC can be identified in some existing systems, but as a systematic
principle and supporting framework, Direct Combination is fundamental and
novel. This paper has presented the first systematic, albeit preliminary, empirical
investigation of a Direct Combination user interface in the ubiquitous domain. The
investigation is small scale and the results must be treated cautiously, but across

A First Empirical Study of Direct Combination in a Ubiquitous Environment 17

all data sources there was consistent preliminary evidence that a DC user interface,
compared with a conventional user interface offers interactions which are faster,
less effort, less frustrating, and impose less mental load on the user. Within its
limits, the study also demonstrated that DC is usable for users from a variety of
backgrounds, and is rapid for them to learn. Building the test environment led to
the identification of three new benefits of DC for users, beyond reduction of search
space, not previously explicitly noted. These concern automatic composition of
actions, the automatic deployment of integrative tools not associated with specific
objects, and the automatic composition of the operation of such tools (see Items 4
and 5 in Section 6). One surprising lesson arising from this study was that, once the
architecture was in place there was considerably more work needed to implement the
programming required for the conventional interactions than for the DC interactions.
This was because, to eliminate any factors that might unfairly disadvantage the
conventional interactions, tuning was carried out solely in the non-DC case to ensure
that all dialogue boxes would be as clear as possible. For the DC case, no such
dialogue boxes, or tuning, were needed, so that work disappeared not only for the
user but also for the designer/developer. No comparable tweaking was done for
any of the DC interactions — they were all done using the standard elements of the
role-based DC architecture. Within the limits of a preliminary evaluation, this study
tends to substantiate the theoretical arguments for the benefits of DC. No evidence
emerged of undue penalties that have to be paid elsewhere. More generally, the
evaluation suggests that the principle is very widely applicable to user interfaces.
The principle is particularly useful when it is necessary for an end-user to arrange for
two or more devices or resources to interoperate together in ad-hoc circumstances.

Acknowledgements
Thanks to Paul Mulholland for generous and vital advice, Bashar Nuseibeh for
urgency, Marian Petre for insightful tips, SJH for vital help, Henrik Gedenryd for
the UC connection, David Morse for support, and to the anonymous referees for
much appreciated comments and criticisms.

References
Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J. B. & Zukowski, D. [2000],
Challenges: An Application Model for Pervasive Computing, in R. Pickholtz, S. K. Das,
R. Caceres & J. J. Garcia-Luna-Aceves (eds.), Proceedings of the 6th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom’00), ACM
Press, pp.266–74.

Bellotti, V., Back, M. W., Edwards, K., Grinter, R. E., Henderson, A. & Lopes, C. [2002],
Ubiquity: Making Sense of Sensing Systems, in D. Wixon (ed.), Proceedings of SIGCHI
Conference on Human Factors in Computing Systems: Changing our World, Changing
Ourselves (CHI’02), CHI Letters 4(1), ACM Press, pp.415–22.

Binsted, K. [2000], Suffi ciently Advanced Technology: Using Magic to Control the World,
in M. Tremaine (ed.), CHI’00 Extended Abstracts of the Conference on Human Factors in
Computing Systems, ACM Press, pp.205–6.

18 Simon Holland

Borchers, J., Ringel, M., Tyler, J. & Fox, A. [2002], Stanford Interactive Workspaces:
A Framework for Physical and Graphical User Interface Prototyping, IEEE Wireless
Communications 9(6), 64–9.

Edwards, K., Newman, M. W., Sedivy, J., Smith, T. & Izadi, S. [2002], Challenge:
Recombinant Computing and the Speakeasy Approach, in I. F. Akyildiz, J. Y. B. Lin,
R. Jain, V. Bharghavan & A. T. Campbell (eds.), Proceedings of the 8th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom’02), ACM
Press, pp.279–86.

Edwards, W. K. & Grinter, R. E. [2001], At Home with Ubiquitous Computing: Seven
Challenges, in G. D. Abowd, B. Brumitt & S. Shafer (eds.), Ubicomp 2001: Ubiquitous
Computing (Proceedings of the Third International Conference on Ubiquitous Computing),
Vol. 2201 of Lecture Notes in Computer Science, Springer-Verlag, pp.256–72.

Hart, S. & Staveland, L. [1988], Development of NASA-TLX (Task Load Index): Results
of Empirical and Theoretical Research, in P. Hancock & N. Meshkati (eds.), Human Mental
Workload, North-Holland, pp.139–83.

Holland, S. & Oppenheim, D. [1999], Direct Combination, in M. G. Williams & M. W.
Altom (eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems: The CHI is the Limit (CHI’99), ACM Press, pp.262–9.

Holland, S., Morse, D. R. & Gedenryd, H. [2002], Direct Combination: a New User
Interaction Principle for Mobile and Ubiquitous HCI, in F. Paterno (ed.), Human Computer
Interaction with Mobile Devices: Proceedings of the 4th International Symposium on Mobile
Human–Computer Interaction (Mobile HCI 2002), Vol. 2411 of Lecture Notes in Computer
Science, Springer-Verlag, pp.108–22.

Kohtake, N., Rekimoto, J. & Anzai, Y. [1999], InfoStick: An Interaction Device for Inter-
appliance Computing, in H.-W. Gellersen (ed.), Handheld and Ubiquitous Computing:
Proceeding of the First International Symposium on Handheld and Ubiquitous Computing
(HUC 1999), Vol. 1707 of Lecture Notes in Computer Science, Springer-Verlag, pp.246–58.

Kortuem, G. [2002], Proem: A Middleware Platform for Mobile Peer-to-Peer Computing,
MC2R Mobile Computing and Communications Review 6(4), 62–4.

Kristoffersen, S. & Ljungberg, F. [2000], Representing Modalities in Mobile Computing:
A Model of IT-use in Mobile Settings, White Paper, Norwegian Computing
Center. Available at http://www.nr.no/documents/imedia/publications/work_in_the_future/
mopas_kristoffersen.pdf.

Lewis, C. & Reiman, J. [1993], Task Centered User Interface Design: A Practical
Introduction, University of Colorado, Boulder, Colorado, USA.

Newman, M. W., Sedivy, J. Z., Edwards, W. K., Smith, T., Marcelo, K., Neuwirth,
C. M., Hong, J. I. & Izadi, S. [2002], Designing for Serendipity: Supporting End-
user Confi guration of Ubiquitous Computing Environments, in B. Verplank, A. Sutcliffe,
W. Mackay, J. Amowitz & W. Gaver (eds.), Proceedings of the Symposium on Designing
Interactive Systems: Processes, Practices, Methods and Techniques (DIS’02), ACM Press,
pp.147–56.

A First Empirical Study of Direct Combination in a Ubiquitous Environment 19

Rekimoto, J. [1997], Pick-And-Drop: A Direct Manipulation Technique for Multiple
Computer Environments, in G. Robertson & C. Schmandt (eds.), Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology, UIST’97, ACM Press,
pp.31–9.

Rekimoto, J., B., U. & Oba, H. [2001], DataTiles: A Modular Platform for Mixed Physical
and Graphical Interactions, in J. A. Jacko & A. Sears (eds.), Proceedings of SIGCHI
Conference on Human Factors in Computing Systems (CHI’01), CHI Letters 3(1), ACM
Press, pp.269–76.

Sousa, J. P. & Garlan, D. [2002], Aura: An Architectural Framework for User Mobility
in Ubiquitous Computing Environments, in J. Bosch, W. M. Gentleman, C. Hofmeister &
J. Kuusela (eds.), Proceedings of WICSA 2002, Kluwer, pp.29–43.

Ullmer, B. & Ishii, H. [2000], Emerging Frameworks for Tangible User Interfaces, IBM
System Journal 39(3 & 4), 915–31.

Weiser, M. [1991], The Computer for the 21st Century, Scientifi c American 265(3), 94–104.

Winograd, T. [2001], Interaction Spaces for 21st Century Computing, in J. M. Carroll (ed.),
Human–Computer Interaction in the New Millenium, Addison–Wesley.

