
ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

125

 Sense before syntax: a path to a deeper understanding of
objects

Rob Griffiths, Simon Holland, Marion Edwards

 Computing Department, The Open University, Walton Hall,

Milton Keynes, England MK7 6AA

r.w.griffiths@open.ac.uk, s.holland@open.ac.uk, medwards@nildram.co.uk

Abstract: This paper describes how we have successful adapted a principled pedagogy

of objects first and progressive disclosure, originally developed for teaching objects

concepts through the vehicle of a pure object language, to the teaching of object concepts

using Java. We employ a cognitive science viewpoint to distinguish between, and

sequence accordingly, two different aspects of learning Java. We focus initially on

fundamental aspects of the object model of computation, which are simple, consistent,

meaningful, and hence relatively stable in memory. Aspects of the Java syntax and

semantics which are contingent or arbitrary, and hence unstable in long-term memory, are

deferred until after students have acquired a secure conceptual model. We use three

principal techniques to assist students in acquiring programming experience of

fundamental concepts relatively un-distracted by contingent detail. These measures are:

interactive microworlds that allow accurate visualisation of central object concepts; a Java

scripting environment that minimises the amount of syntax required, but which allows

students to interact with and inspect 'live' objects in the microworlds; and an explicitly

object-oriented (if verbose) programming style that reinforces object-oriented concepts.

Dealing with Java-specific design peculiarities is thus deferred until students have a stable

conceptual model on which to scaffold a deeper understanding of objects.

Keywords: Java, microworld, objects first, progressive disclosure, OUWorkspace,

BlueJ, scripting environment, object-oriented, Smalltalk, cognitive science.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

126

1. Introduction
After thirty or more years experience, it may sometimes appear that there is very little

genuinely new to be said about teaching object concepts to undergraduates. We argue

that, to the contrary, there is plenty of room for new teaching insights to arise, for example

by the application of new findings from areas such as cognitive science.

Equally, it is sometimes assumed that, for purposes of teaching object concepts,

differences between object-oriented languages are minimal. Again, we will argue that this

is not the case. Pure object languages such as Smalltalk that use a single consistent

conceptual metaphor for computation, can be understood using much simpler cognitive

structures than hybrid languages such as Java, which mix several conceptual metaphors

inconsistently (Mortensen, 2001). Such simplicity makes simpler teaching strategies

possible and makes it relatively straightforward to focus on fundamental concepts. The

purpose of this paper is to investigate the degree to which some, if not all, of the

pedagogical benefits afforded by pure object languages can be retained when teaching

object concepts using hybrid languages, given an appropriately designed teaching

strategy.

2. Background
The institutional backdrop to this work is the replacement of The Open University’s highly

successful course, M206: Computing an Object-oriented Approach (Woodman et al, 1998;

Holland et al, 1997). This 60 point Smalltalk-based course won a prestigious BCS IT

Award, was recognised for its innovation by attaining Design Council Millennium Product

status, and attracted some 35,000 students in its presentation lifetime. With the

introduction by the Open University of named degrees and with this previous course

coming to the end of its presentation lifetime (2005) it was decided to replace it with two 30

point courses, one to teach Object-oriented Analysis and design (designated M256) and

one to teach fundamental object-oriented programming principles (designated M255).

This latter course, M255, is the subject of this paper. Initially it was planned that M255

should continue the strategy of teaching object-oriented concepts using Smalltalk, but

early in its design, a Departmental level decision based principally on marketing factors

was taken to switch the main computing language for undergraduate teaching from

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

127

Smalltalk to Java, in order to better meet issues such as name recognition by students,

and to more directly address student perception of employability issues. This posed the

development team with a substantial problem; how to retain as many as possible benefits

of a carefully designed and proven teaching strategy based on simplicity, consistency, and

a clear conceptual model of computation, when switching to a hybrid language such as

Java, which implements objects in a partial and irregular way (Bates, 2004).

As the purpose of the course is not to teach the minutiae of any particular language but

rather to teach fundamental object-oriented programming concepts and skills transferable

to any object-oriented language, we looked for ways to focus on fundamental aspects of

the object model of computation, which are simple, consistent and meaningful, while

deferring an emphasis on syntactic detail until students had a stable conceptual model

against which the detail could be related. We found three principal measures to facilitate

this in Java. The three measures were:

 Open-ended interactive microworlds that allow accurate visualisation of object

references, message sending, state change and specialisation.

 A scripting environment for Java that minimises the amount of syntax that students

initially need, but which allows them to create, interact with and inspect the state of

'live' objects that are automatically displayed in a graphical window.

 An explicitly object-oriented (if verbose) programming style that reinforces object-

oriented concepts.

We will now deal with these measures in turn.

3. Microworlds
To provide a way of visualising, interacting with, and reasoning about concrete examples

of object concepts, we designed a series of graphical microworlds concerning frogs and

other amphibians. These microworlds allow the visible actions and state of amphibians to

be controlled in two parallel ways – on the one hand via buttons and menus, and in parallel

by sending messages to the amphibians using Java statements via a code pane. This

duality reflects in a concrete form the heart of the object model of computation, which may

be viewed as being based on a metaphor between objects and computers, and a recursion

on this metaphor, viewing computation as built from networks of simpler computations

collaborating together (Kay, 1993).

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

128

In particular, the amphibian microworlds model the behaviour of instances of the classes

Frog and Toad and of a subclass of Frog, HoverFrog. As the name ‘hoverfrog’ implies,

the classes are deliberately designed to be cartoon-like rather than realistic, and to be both

visually and conceptually memorable. So for example, in the cartoon-like amphibian

microworld, hoverfrogs may be positioned by students at arbitrary heights on the y axis,

whereas simpler amphibians such as frogs, may be asked to hop only from stone to stone

along the x-axis. This playful approach to abstracting state and behaviour is intended to

help demystify the processes of abstraction and modelling. The simplicity and

memorability is intended to give students a reference set of easy-to-memorise and

eventually fully analysed examples to use as a portable personal resource throughout the

course, able to illustrate the full range of object concepts.

Students interact with these microworlds at the very beginning of the course before they

have seen any Java code. As already outlined, the microworlds are concrete cartoon-like

worlds consisting of frogs and various other amphibians (two variations of the microworlds

are shown in figures 1 and 2). For the purposes of the microworlds, frogs can be made to

move their position and change their colour.

Figure 1

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

129

Figure 2

Via buttons, students can look at the state of frogs, send messages to them, see how they

behave in response, see how this affects their state and look at how a message to one

frog may in some cases cause a frog to send a message to another frog (sameColourAs()

button in figure 2). As the students progress through the microworlds, more of the protocol

of the amphibian objects, and the mechanisms used in their interactions are progressively

exposed.

These microwords are also the vehicle by which students learn the syntax for writing

message-sends (method invocations). Each microworld has a Code Pane in which they

can write and execute Java statements (as shown in figure 2). By opening up a

microworld's code pane they can write statements that can do everything that pressing

buttons can do such as frog1.right(); and frog3.sameColourAs(hoverFrog2);.

As already touched on, these microworlds have been devised to reveal fundamental object

concepts including object reference, state change, polymorphism, specialisation and

abstraction. The microworlds that students encounter are already populated with existing

amphibians, but later in the course, students create new amphibians of various kinds

which can be displayed in a graphical window.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

130

Moving on to the interactive visualisation of object state and behaviour, figure 1 above

shows a microworld which contains objects of the classes Frog and Toad. These two

classes have identical attributes – position and colour – and identical message

protocols, such as green(), brown(), home(), right() and left(), which

respectively set the receiving object’s colour to green, or brown, change its position to

the “home” position and move left or right. Students select references to any of the objects

in the microworld from a regular scrolling list and use buttons to send the corresponding

messages. This simple user interface not only allows straightforward message sending to

be visualized, it allows more abstract notions such as polymorphism to demonstrated; for

example, when a frog is selected and the home() button is clicked (resulting in the

message home() being sent) the receiving frog moves to the leftmost position, but if a

toad has been selected, and so receives the message home(), it moves to the rightmost

position – the “home” position for toads. This microworld also allows us to introduce the

notion of class; frogs and toads do not behave identically to the same protocol, leading

students to notions of different classes and different interfaces.

Figure 3

Figure 3 shows a microworld with a Frog object and a Hoverfrog object where students

discover that instances of Hoverfrog understand all the messages sent by all the buttons

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

131

in the microworld. The same is not true of frogs and toads. When the messages up() or

down() are sent to the frog object, the Display Pane opens up and a message informing

the user that an error has occurred is displayed. Further inspection of Frog and

Hoverfrog objects (figures 4 & 5) reveals that Hoverfrog objects have an additional

instance variable – height.

Figure 4

Figure 5

Through this exploration students are guided to discover that a hoverfrog has everything a

frog object has but an extra attribute and an extended protocol – conceptually setting the

scene to explore the fact that the HoverFrog class is a subclass of the Frog class. Once

inheritance has been explicitly taught, students redesign these classes (Frog, HoverFrog

and Toad) to be concrete subclasses of an abstract class Amphibian.

In figure 5 the inspector shows the state of a HoverFrog object. The inspector for an

object always has three columns that list: the object's attributes, the types of those

attributes and the values of those attributes. The inspectors are diving inspectors,

therefore double-clicking on the colour row will reveal the state of the OUColour object as

shown in Figure 6.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

132

Figure 6

This, although not made explicit until later, reveals that fundamentally all objects (in Java

at least) are composed of primitive types.

In the very initial stages, through exploration of these microworlds students quickly learn

the following key ideas before getting to grips with the Java language:

 Messages – the only way to get an object to do anything is to send it a message

 References – to send a message to some object you need a way to refer to it.

 Attributes – by observing the results of sending messages to amphibian objects

students discover that frogs and toads have the attributes of colour and position and

hoverfrogs have the additional attribute height.

 Class – objects of the same class have the same attributes and the same behaviour

 Inheritance – objects that can do everything that another object can do – and them

some more, are likely to be a instances of some subclass.

After learning the basic ideas about objects through exploring the microworlds, students

move on to using a Java Integrated Development Environment (IDE). The IDE chosen was

BlueJ. We chose this IDE as it has an extremely simple user interface, was specifically

developed for teaching Java and is platform independent. Excellent though BlueJ is, we

required a more flexible and expressive parallelism between interactively interpreted Java

and graphical windows than was available in BlueJ. For this reason, we developed an

extension to the environment called the OUWorkspace – where, very shortly, the same

key ideas bulleted above are then explored in detail using sequences of messages

executed in the OUWorkspace. This we describe in the next section.

4. The OUWorkspace
In a traditional Java course the very first thing that a student does is to write (or more

probably copy) a completely static class as shown below:

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

133

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 }

}

Straight away students are faced with understanding (or perhaps not) the structure of a

class file, the delimiters '{' and '}', the purpose and structure of the main() method, how

to declare an array of strings and the reserved words: public, static and void – which

at such a point in their study is information overload. They then have to compile the class

and then finally execute the program (probably from the command line). More importantly

the code has very little to do with objects. The only object created by the program is the

literal string "Hello World!" and the only message in the code is println() sent to

out. The BlueJ IDE (Kölling et al, 2003) does much better than this, however from our

experience of developing an integrated Smalltalk learning environment (Woodman et al,

1999) we wished to develop a simpler solution better suited for distance learning where

students have limited contact with tutors, and better suited to the teaching strategy

outlined above. This involved developing the OUWorkspace.

The OUWorkspace is a scripting environment for Java built as an extension to BlueJ. It is

opened from within BlueJ by selecting Tools | OUWorkspace. When opened it is

configured to work with the currently open BlueJ project allowing the creation and

manipulation of instances of the classes defined in that project. In addition the

OUWorkspace has access to many of the standard Java classes and the classes in the

course supplied OU Class Library. If no BlueJ project is open the OUWorkspace only has

access to the standard Java classes and the classes in the OU Class Library. The fact that

all these classes are in scope to the OUWorkspace means that we can defer another bit of

syntax: the import statement.

The OUWorkspace (see figure 7) contains three panes labelled 'Code Pane', 'Display

Pane' and 'Variables'. The Code Pane is used to declare variables, enter and execute

Java statements. To execute the statements the user must first highlight them and then

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

134

select the Action | Execute Selected menu option or the Execute Selected option on

the Code Pane’s popup menu. The Display Pane is where any textual output relating to

those executed statements, including error messages, is displayed. The list pane labelled

Variables holds a list of the currently declared variables in this case hoppyHeight and

hoppy.

If an error is detected when the selected code is executed an error message will be shown

in the Display Pane. An error message is identified as a syntax error, a semantic error or

an exception. If more than one line of code has been executed the error message includes

the line number of the code containing the error. This line number is relative to the

highlighted code rather than all the code currently in the Code Pane.

Figure 7

With the Show Results check box checked and if the last expression in a statement returns

a value (either an object or a primitive) the textual representation of that value will be

displayed in the Display Pane (as shown in figure 7). If the Show Results check box is not

checked only the results of System.out.println() statements are shown in the

Display Pane (figure 8).

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

135

Figure 8

If the currently opened BlueJ project includes classes whose instances can be displayed

graphically (at present we support amphibians and shape classes), then a Graphical

Display menu appears in the OUWorkspace's menu bar from which a graphical window

can be opened. Figure 9 shows BlueJ with an open project that contains all the classes in

the Amphibian hierarchy, the OUWorkspace and a graphical window capable of displaying

amphibians.

Figure 9

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

136

Any Amphibian object created in the OUWorkspace and assigned to a variable will

immediately appear in the graphical window, as the domain of that window is the pool of

variables declared in the OUWorkspace and any variables that reference objects of the

correct type will have their graphical representation displayed. Any message-sends to

amphibian objects in the OUWorkspace will therefore be visually demonstrated. Students

subclass the existing classes in the Amphibian hierarchy and any objects of these

subclasses that they create and assign to a variable in the OUWorkspace will

automatically be visible in the graphical window too, exhibiting whatever behaviour

students choose to give them.

Objects created in the OUWorkspace may be given multiple references to allow concrete

and visible experimentation with reference semantics, and to emphasize the fact that a

reference can be a many-to-one relationship. To ensure that object destruction is

interactively visualised, if the sole variable holding an object is assigned null in the

OUWorkspace the object will be visibly garbage collected and the graphical representation

of the object will disappear from the graphical window. Further concepts, such as

refactoring, interfaces (which are taught very early), broadcast dependency and simple

coding patterns are explored in similar ways.

5. Coding style
Of course, students move on from writing snippets of code in the OUWorkspace to

modifying methods of existing classes before moving on to develop classes of their own. In

writing code we enforce a verbose coding style that reinforces object ideas. We insist that

within methods an object's own instance variables are always qualified by this and that

class variables are always qualified by the class name – we do this because we want to

make clear the distinction between object and class and also to avoid any confusion with

similarly named class or local variables. Similarly messages within a method to the object

executing that method are always qualified by this (or of course super); to miss out the

qualifier is to make the message-send look like a procedure call and we wish to reinforce

that most of the processing in an OO program involves sending messages to objects.

Note, in the context of objects we always talk in terms of sending messages to objects, not

invoking methods. Messages are polymorphic, methods are not; the decision on which

method to invoke is not determined at compile time but at run time by the JVM depending

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

137

on the class of the object. However with static (class) methods we do talk in term of

method invocation as method resolution can be determined at compile time. Instance

variables are invariably made private to enforce data hiding and where necessary public

accessor methods are written.

6. Evidence of the effects of the approach
The primary aim of this paper has been to describe and analyse a teaching approach and

its systematic basis in a set of principles. It is not primarily about an empirical examination

of the effects. However, there are some sources of evidence available that have some

general bearing on the effects of the teaching approach on students and teachers, which

we will now consider.

The first source of evidence comes from the routine student surveys that the Open

University carries out for all courses. These surveys present the opportunity to compare

students’ general opinions of M255 with a pre-existing course that took a far more

conventional approach to teaching Java. More specifically, prior to M255 the only 2nd level

course to teach Java was the 20pt course M254, which had four presentations between

2004 and 2006. This course was traditional in its approach, for example, starting off with

main() to print a string to the standard output, teaching loops and iteration before

addressing objects. The students on both M255 and M254 were surveyed in the autumn of

2006 by the University's Institute of Educational Technology as part of a survey of all our

faculty's courses. In the survey students were asked to rate their extent of agreement to a

number of statements (table 1). The results are indirectly relevant to our claims in that they

afforded an opportunity to refute or weaken the claim that our approach is beneficial to

students.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

138

 M254 M255

The course was more difficult than I
expected.

Definitely or mostly agree 59.1% 20.5%

The course met my expectations. Definitely or mostly agree 79.4% 89.1%

Overall I was satisfied with the teaching
materials provided on this course. (For
example printed text; CD ROMs; DVDs;
online materials.)

Definitely or mostly agree 80.4% 90.4%

I enjoyed studying this course. Definitely or mostly agree 82.2% 87.2%

I would recommend this course to other
students.

Definitely or mostly agree 72.9% 85.7%

The course met its stated learning
outcomes.

Definitely or mostly agree 84.1% 89.6%

The course provided good value for
money.

Definitely or mostly agree 67.0% 78.3%

Overall I am satisfied with my study
experience.

Definitely or mostly agree 79.4% 90.4%

Overall I am satisfied with the quality of
this course.

Definitely or mostly agree 79.4% 89.1%

Table 1

The simplest relevant observation from this data is that for all nine questions, students

expressed more positive opinions about M255 in comparison to the more conventional

M254.

Another source of feedback comes from the Open University's Course Reviews web site

where students are encouraged to comment on any course they have studied

(http://www3.open.ac.uk/coursereviews/). Two students commented specifically on the

object-oriented nature of the course, as follows.

“A very enjoyable course. I have done some programming before, but had never really

got my head around Object-Oriented Programming - until this course. The course

content kept me interested and explained everything ever so clearly. I'm now really

looking forward to, and am confident about, studying the higher level courses in this

area.“

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

139

“This was a truly excellent course that really does get you started in OO programming

and Java. It does exactly what it says on the tin and actually helped me a great deal in

moving to a new job where I am programming in C+(a similar language to Java.) The

course materials were great and the software equally good (apart from a few bugs in the

OUWorkspace which will hopefully be ironed out in future presentations.) 10/10 "

A third indirect source of evidence about the effects of M255’s approach is the figures for

success on the course compared with its more conventional predecessor (tables 2 & 3).

 M255 (Oct '06) HEFC
Return

Percentage of students included in
HEFC returns who sat the exam

Total 1409 63

New students 131 63

Continuing students 1278 63

Table 2

 M254 (Oct '06) HEFC
Return

Percentage of students included in
HEFC returns who sat the exam

Total 309 60

New students 16 56

Continuing students 293 60

Table 3

Perhaps the most interesting observation here is that the retention of new students was

significantly increased, while more generally, retention was up slightly. Evidence of this

kind bears only obliquely on our assertions, however, again it did at least afford an

opportunity to rebut our claims.

The fourth source of evidence we shall consider comes from a small opportunistic poll of

tutors who had taught on both courses (table 4). The sample is opportunistic in that all

nineteen tutors were polled, but only some were able to respond in the limited time

available. The sample is not statistically significant (six tutors), although extremely similar

results were obtained from slightly larger sample of eight tutors on the course, by including

responses from two of the authors of this paper. However, we will limit our comments here

to the responses of the group uninvolved in this paper.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

140

Tutors at the Open University are frequently asked their opinions about courses they

teach, and the institutional culture is such that critical opinions are freely and routinely

given. The questionnaire covered three of the most salient features of the course, and

considered ten aspects of each of these features. Tutors were asked to respond on a five-

point Lickert scale as follows: Definitely agree = 2, Mostly agree = 1, Neither agree nor

disagree = 0, Mostly disagree = -1 and Definitely disagree = -2 . The results of the

questionnaire are shown below (table 4). Entries in the table indicate the proportion of the

six tutors mostly agreeing or agreeing strongly with the statements as applied to the

different features of the course. Some key observations are that the sample were

unanimous that all three selected features of the course benefited students. Interestingly,

there was less unanimity about benefits to tutors. However, it is worth noting (not shown in

the table) that none of the sample of tutors mostly disagreed or definitely disagreed with

any of the statements about any of the features. In other words, the least positive opinions

expressed in response to any question were neutral – there were no negative responses

to any question. However, when the sample was expanded to eight course teachers (not

shown in the table) by including the authors, some negative opinions were recorded. This

was due to the fact that one author considered one aspect of the object oriented

programming style (a stress on accessing instance variables via accessor methods, rather

than directly) to add one more element of verbosity to an already relatively verbose

programming language. However in all other respects, results from the slightly larger

group were very similar.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

141

 Interaction with
objects via
memorable
microworlds in
M255

The use of the
OUWorkspace in
M255 to interact
with live objects

The explicitly
object-oriented
programming
style of M255

Benefits students 6/6 6/6 6/6

Benefits tutors 3/6 4/6 5/6

Helps students to visualise object
concepts

6/6 6/6 6/6

Helps students to grasp object
concepts quickly

6/6 6/6 6/6

Helps students to focus on object
fundamentals rather than syntactic
detail

6/6 5/6 5/6

Helps students to form a clear
conceptual model

6/6 5/6 6/6

Helps students to remember object
fundamentals

6/6 5/6 5/6

Helps students to explore the
syntax and semantics of Java

4/6 4/6 3/6

Makes the course more interesting 6/6 5/6 4/6

Makes the course more fun 6/6 3/6 2/6

Table 4

Tutors were also given the opportunity to contribute free form comments on any issues

raised by the questionnaire. Principal issues were raised as follows.

Several tutors commented on a specific technical limitation of the OUWorkspace (it is

currently unable to deal with generic collections as introduced in Java 1.5), which means

that it cannot be used directly to manipulate such collections. Some tutors commented on

the usefulness of the OUWorkspace to tutors as well as to students.

 "The OUWorkspace is wonderful – I found it very useful when writing my own code and

in preparing examples (although there are things that you can't do with it)."

"The workspace used an old version of the JDK so not all Java syntax could be

explored interactively which was frustrating for student/tutor. Otherwise, it was an

excellent course, taking and adapting the first half of M206."

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

142

One tutor commented on neglected opportunities.

"I do think it would have been useful to use the BlueJ facility that lets you create an

object and send messages to it by clicking on its representation in the BlueJ desktop. I

think it better connects classes and objects than the OU workspace. I also think it would

help to teach them to use the interactive debugger."

Some tutors noted the benefits to students and tutors of interweaving early coding with

memorable microworlds, and the extent to which this encouraged confidence.

"It allows me as tutor at tutorials to talk in more concrete terms."

"My only other comparison with another OU course in Java is M257 [a follow on Java

course], but for the initial hands on approach, the model borrowed from M206 seems to

allow progress at an early stage to confidence that is crucial to good success. This

appears to be true for both experienced students and those just starting."

This view of the microworlds was not universal.

"My only concern is with the microworlds which some students (and tutors) find

irritating. I don't have this view - I think they are very helpful."

Some comments concerned the explicit object-oriented style of coding in M255.

"The OO style isn't just preferable, it's essential! – although students who then go on to

M257 [a follow on Java course] seem to get upset that they aren't required to stick to

the same rules there. Again, I don't have a problem with this – we don't live in an ideal

world, and the sooner they get used to having to do things differently on different

occasions, the better."

Some tutors commented on the course’s foregrounding of object-oriented concepts over

syntactic detail.

"I think the course does a good job in abstracting the essential concepts of OOP before

they get bogged down in the complex syntax and semantics. The rapid progress of

M257 students is a good sign that we are getting it right."

Each category of evidence that we have considered is only weakly indicative in terms of

strict relevance to our claims. Still, each category did at least offer an opportunity to rebut

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

143

our claims, and in each case, to the limited extent that the evidence is able to afford

relevant support, relatively clear support was given.

6. Conclusion
In terms of the goals that we set ourselves for the course, namely to teach object concepts

through the vehicle of Java while approaching as closely as possible the clarity with which

we were able to teach them using a pure object language, we believe we have had a

reasonable degree of success, but it is open to more rigorous empirical evaluation to

determine exactly to what degree, and in what respects, we have been successful.

The need to deal with the large number of irregularities, inconsistencies and special cases

in Java curtailed the breadth of detail we were able to cover compared with the previous

course using a pure object language (M206). For example in M206, students with no

previous experience of programming gained firm grasp not only of constructing and

modifying MVC user interfaces, but also extensive detail of the separable interface

architecture and the mechanisms used, as well as quite complex forms of object-oriented

iteration (Griffiths et al, 1999).

We believe that teaching fundamental object concepts lucidly, over and above the

teaching of skills in particular programming languages, is not an optional goal – it is vital.

We recommend consideration of the strategies outlined in this paper to teach object

concepts effectively, whatever language is used as a vehicle.

ITALICS Volume 6 Issue 4, October 2007

ISSN: 1473-7507

144

References
Bates, R. (2004) Opinion: Schizoid Classes, ACM Queue: Tomorrow’s Computing Today,
2(6), pp. 12-15.

Griffiths R., Holland S., Woodman M., Macgregor M., Robinson H. (1999), Separable UI
Architectures in Teaching Object Technology In: Proceedings of the 30th International
Conference on Technology of Object-Oriented Languages and Systems, IEEE Computer
Society Press, pp. 290-299.

Holland S., Griffiths R., Woodman M. (1997) Avoiding Object Misconceptions
In: Miller J., E. (Ed.), Proceedings of the 28th ACM Special Interest Group on Computer
Science Education Technical Symposium on Computer Science Education, ACM Press,
pp 131-134.

Kay, A., C. (1993) "The Early History of Smalltalk", ACM SIGPLAN Notices, 28 (3), pp. 69-
95.

Kölling, M., Quig, B., Patterson, A., Rosenberg, J. (2003), The BlueJ system and its
pedagogy, Journal of Computer Science Education 13 (4), pp. 249-268.

Mortensen, S. E. (2001) Why Java Isn’t Smalltalk: An Aesthetic Observation, Smalltalk
Chronicles, 3 (1).

Woodman M., Griffiths R., Macgregor M., Holland S. (1999), OU LearningWorks: A
Customizable Learning Environment For Smalltalk Modules In: Proceedings of the 21st
International Conference on Software Engineering, IEEE Computer Society Press, pp.
638-641

Woodman M., Griffiths R., Robinson H., Holland S (1998) An Object-oriented Approach to
Computing. In: Haungs J. (Ed.), Proceedings of the ACM Conference on Object-oriented
Programming, Systems and Languages, Educators' Symposium Addendum, ACM Press.

