
Papers CHI 99 15-20 MAY 1999

262

Direct Combination
Simon Holland Daniel Oppenheim

Department of Computer Science Computer Music Center
Open University, Milton Keynes IBM TJ Watson Research Center

MK 7 6AA, England PO Box 218, Yorktown Heights
+44 1908 653148 NY10598 USA

 s.holland@open.ac.uk +1 914 945 1989 music@watson.ibm.com

ABSTRACT
This paper reports on Direct Combination, a new user
interaction technique. Direct Combination may be viewed
variously as: a systematic extension to Direct
Manipulation; a concise navigational framework to help
users find the operations they need; and as a framework to
make a greater range and variety of operations available to
the user, without overburdening user or interface designer.
While Direct Combination may be seen as an extension of
Direct Manipulation, it may also be applied to a wide range
of user interaction styles, including even command line
interfaces. Examples from various hypothetical systems and
from an implemented system are presented. This paper
argues that Direct Combination is applicable not just to
problem seeking or design oriented domains (where the
technique originated) but is generally applicable. A variety
of new interaction styles for Direct Combination are
presented. The generalisation of Direct Combination to the
n-dimensional case is presented.

Keywords
Interaction technique, interaction styles, interaction design,
navigating large operator spaces, novel interaction objects,
n-tuples, creating new operations, interaction theory.

INTRODUCTION
In direct manipulation and graphical user interfaces from the
Xerox Star [5] onwards, the form of many, though not all,
user interactions may be characterised loosely in terms of
the following pattern.

 interactionObject operator [arguments]
That is to say, user interactions often consist of the user
selecting some interaction object, then using a menu,
button, keystroke, mouse or similar means to specify an
operation on that object. A dialog box or other mechanism
may be used to allow the user to qualify the operation with
one or more arguments. This interaction pattern can be re-
stated metaphorically in the following way:

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists requires specific prior permission and/or a fee.
CHI '99 Pittsburgh PA USA
Copyright ACM 1999 0-201048559-1/99/05…$5.00

 noun verb - with optional qualifying terms.
Direct Combination is a way of extending Direct
Manipulation by focusing systematically not on single
interaction objects but on pairs of interaction object. The
essential requirement for Direct Combination is that for
every pair of interaction objects in a system, there should
be at least one or more operators defined and available to the
user. To explore this idea, we will consider some examples.
Direct Combination can be afforded using a variety of
interaction techniques: we will begin by focusing on a style
using a toolglass or magic lens [1]. (These terms are
explained in the following section.)

person

SS ll aa pp

person

rocky

SS ll aa pp

person

rocky

difference1

highlite
difference

append

use as
mask

paste

use as
pen

rocky

Figure 1: A Direct Combination of two bitmaps. One
bitmap is dropped through a toolglass onto the other to
produce a difference bitmap.

Introducing Direct Combination
Figure 1 shows two windows (labelled ‘Rocky’ and
‘Person’) in a hypothetical desktop environment. These

Papers CHI 99 15-20 MAY 1999

263

windows contain similar, but not quite identical bitmaps. If
the user drags one window over, or partly over another
window, nothing of interest happens; the first window is
simply left lying over the other. But the situation can be
transformed by using a toolglass (figure 1). A toolglass [1]
is typically a transparent but shaded pane (here labelled
‘Slap’) which can be slid around independently over the
other interaction objects. The user moves a toolglass by
using a pointing device operated by the second (usually the
left) hand. Tool glasses, and the closely related magic
lenses, are generally used to modify the effect of some tool
wielded by the other hand, or to provide specialised views of
interaction objects underneath them. In Direct
Combination, the toolglass can be used to modify the
effects of drag and drop. For the following examples, we
will introduce some terminology to improve clarity. In
cases of drag and drop, we will refer to the item being
dragged as the ‘visitor’, and the item it is dropped on as
the ‘target’. We will refer to the tip of the arrow used to
drag the visitor as the probe.

My Pane

7 SS ll aa pp

Magnify
x 7

Print
7 copies
of
document

Print
7 copies
of
pane7

My Pane

7 SS ll aa pp

My Pane

Figure 2: Direct Combination of the integer 7 with a
bitmap.

To continue with our first example, when the tool glass by
itself is slid partially or wholly over the window labelled
‘Person’, this has no particular effect. But if the user drags
the visitor, ‘Rocky’, over the target, ‘Person’, with the tool
glass sandwiched in-between, something different happens.
As in conventional drag and drop, the target becomes
highlighted when the visitor is held over the target. At the
same time, the toolglass divides into labelled regions each
representing a different operation that can be performed on
the ordered pair of visitor and target object. In the present
case, the visitor and target both happen to be of the same

type, namely they are both windows open on a bitmap.
Accordingly, the toolglass divides itself into regions
corresponding to the following operations specific to two
bitmap windows: paste, append, highlight differences, use
as mask, use as pen. (Of course, many other operations
could be defined on pairs of bitmap windows.) The region
of the toolglass labelled with the default option (‘highlight
differences’) is distinguished from the other regions by bold
dividing lines. By sliding the toolglass around with the left
hand between target and probe, the user can choose one
operation from those on offer. Specifically, the tip of the
arrow icon (the probe) used to drag the visitor object is
taken to define the selection point. When a toolglass region
is selected but before it is executed, it is highlighted (just
like a menu choice). If the help system is switched on, a
brief summary of each operation is displayed as the
operation is selected. When the visitor is dropped, the
highlighted operation is executed. In our first example, a
third bitmap window is created containing just the
differences between the two bitmaps (figure 1).

Diversity of Interaction Objects
Direct Combination (DC) is not limited to dragging and
dropping windows or icons: it can be applied to any kind of
interaction object. Indeed, the wider the range of interaction
object available, the more expressive direct combination can
be. Our second example (figure 2) deals with a hypothetical
implementation of Direct Combination in Self [6], where
all system objects, including numbers, are draggable
interaction objects. In this second example, dragging the
integer 7 onto the window labelled ‘My Pane’ has no effect,
but placing the toolglass between visitor and target elicits
three possibilities, magnify by 7, print 7 copies of pane
dump, or print 7 copies of full document. Figure 2 shows
the effect of dropping the number 7 through the ‘magnify
by 7’ region of the tool glass. Note that all options differ
from those in the first example. The options are determined
neither by the integer alone nor by the window alone - they
are determined by the context of the ordered pair of
interaction objects (number, window).

An Alternative DC Interaction Style: Portals
The tool glass makes it possible to retain the ordinary
functionality of drag and drop (e.g. moving files) while
keeping direct combination interactions straightforward. But
direct combination can be implemented without the
complication of two pointing devices. One alternative
interaction style that requires only a single pointing device
uses portals. Figure 3 shows a desktop environment with a
document and a folder. In this example, dragging the
document icon over the folder icon causes the target icon to
be highlighted and to expand, if legibility demands,
revealing two portals labelled move and other choices. The
default operation, move is shown in bold. If the user
wishes to choose the default operation, the visitor object

Papers CHI 99 15-20 MAY 1999

264

can simply be dropped down the default portal as a
continuation of the gesture used to highlight the target.
Alternatively, if the user drops the visitor down the other
choices portal, a menu of choices is offered. In this case,
the choices specific to the file and folder ordered pair include
the following: copy the file to the folder; move the file to
the folder (default); find all files in the folder of the same
type as the sample file; find all files in the same folder
created at the same time (minute, hour, day, week, month
or year) as the sample file; find all duplicates of the file. To
cancel the operation, the user need only move the cursor
away from the menu, which then vanishes, and the target
flies back to its original position. In figure 3, the user has
chosen the find all files of the same type option, which
creates a new folder on the desktop containing the aliases of
the found files.

 My folder My document

 My folder

Move
Other
choices

Duplicates
Files of same type
Files of same date...
Files of similar contents
Files of same name
Files of similar size
........

Move
Other
choices

 Aliases of files found

 My folder

Move
Other
choices

Move
Copy
Search for...
...
...

Set new default

My document

My document

Move
Copy
Search for...
...
...

Set new default

My document

 My folder

 My folder My document

Figure 3: Direct Combination via a Portal.

DIRECT COMBINATION Vs DIRECT
MANIPULATION
One way to view Direct Combination is as an extension of
Direct Manipulation. We noted earlier that many (though

not all) direct manipulation user interactions may be
characterised loosely in terms of the following pattern.

 interactionObject operator [arguments]
Direct Combination requires the following additional
interaction pattern to be made available.

 (visitorObject targetObject) operator [arguments]
In other words, Direct Combination requires (in the ideal
case) that the system permit any pair of interaction objects
to interact meaningfully. As noted earlier, this capacity
should not be limited to icons. Interaction objects can
include: graphic elements, diagrams, selections of text,
items on a list, collections of cells, hotlinks, parts of a
pane, numbers, characters, files, folders, or entire windows
or panes. As the second example suggested, the scope of
direct combination is greatest in systems with the widest
range of interaction objects. An ideal example of such a
system, noted earlier, is Self [6], which is both a
programming language and a user interface construction
environment. In Self, every internal object is potentially
visible, and every visible item has the potential to take part
in user interactions. In its drag and drop manifestation,
Direct Combination requires that every object in the system
can meaningfully be dragged and dropped on any other
object. Direct Combination can be characterised by the
following principles.

Principles of Direct Combination
• Every object of interest in the system should be visible
(or more generally perceptible).
• Every object of interest in the system should be capable of
treatment as an interaction object.
• Every interaction object should be capable of useful
interaction, in one or more ways, with any other interaction
object. The interactions available should be diverse, and
should be well-suited to each ordered pair of object types.
Of course, there is nothing new about dragging and
dropping, sometimes with a limited choice of operations
(e.g. Windows non-default drag-and-drop). The key
requirement in Direct Combination, that differentiates it
from other interaction strategies is that every pair of objects
of interest must have its own set of useful operations
defined, well-suited to that particular pair. Conversely,
Direct Combination is not limited to drag and drop. Some
other interaction styles for direct combination will be
examined later in this paper that do not involve drag and
drop at all.

Treatment of Argument Objects
The objection might be raised that the ‘new’ interaction
pattern is already implicitly present in the optional
arguments of the existing pattern

 interactionObject operator [arguments]
This may be true in some abstract mathematical sense, but
not from a user interaction viewpoint, since the direct
combination pattern gives rise to distinctly new affordances
and new usability issues. However, focusing on the

Papers CHI 99 15-20 MAY 1999

265

treatment of arguments in the pattern does bring to light
some interesting issues, as we shall now consider. In many
direct manipulation systems implemented using the noun
verb pattern, dialog boxes are used to specify any needed
arguments. Such dialog boxes create a context which
restricts the freedom of the user. Indeed, many dialog boxes
are modal, requiring the user to specify certain information
or to cancel the entire interaction before being permitted to
take part in any other interaction. Conversely, dialog boxes
(i.e. the parts of the system dealing with arguments to a
command) are often not accessible to the user until the
primary interaction object and the operator have been
determined. Both of these restrictions violate the principle
of direct manipulation that the items of interest should be
visible and open to manipulation at all times. Thus, some
styles of interaction characterised by the pattern noun, verb,
dialog-box prevent users from manipulating primary objects
(or operators) of interest while dealing with arguments, and
vice versa. This can be irritating to users. For example, a
dialog box may require the user to specify a pathname for a
file, but provide no convenient means from within the
dialog box to find it. Outside of the dialog box, the file
may be directly selectable, but to no avail. Direct
Combination provides a way around some of these
violations of direct manipulation principles imposed by
dialog boxes. This issue arises even more acutely in the n-
dimensional case, treated later in the paper.

IMPLEMENTATION AND FEASIBILITY
To simplify discussion of implementation issues, it will
help to introduce further terminology. Since direct
combination is not limited to drag and drop, it is useful to
have a common term for the user action of whatever kind
used to interact two objects. This is referred to as a slap [4] .
The resulting operation carried out on the two objects of
interest in the underlying system is called the mix
operation. If there is a choice of operation, then the mix
operator incorporates a set of submix operations. At first
sight, it might appear that direct combination must be
arduous to implement, in terms of the amount of work
required to specify the semantics of the mix operations for
each pair of interaction object classes. This need not be so,
as can be seen from the case where direct combination is
implemented in a single-rooted, uniformly object-oriented
operating system or environment such as Smalltalk, Omega
or Self. In fact, Direct Combination can be applied
irrespective of how the underlying system is implemented,
but the method of implementation is particularly
straightforward in such systems. The implementation
strategy can be outlined as follows. Firstly, note that every
visible (or more generally, every perceptible) object in the
interface should correspond to a more or less well-defined
computational object in the underlying object-based system.
Secondly, note that in a single-inheritance class hierarchy,
every object in the system will inherit its behaviour from

one or more abstract classes (or prototypes in a prototype
system) ultimately commonly rooted in the most general
category Object. By exploiting inheritance, and assuming
there are n classes of interaction object, it is clear that there
is no need to define mix and submix operations explicitly
for all n2 possible pairs of classes. We need only define
distinct mix operations for the much smaller number of
appropriate abstract classes, and for some leaf classes.
Provided these classes and their mix operations are suitably
chosen, the mechanism of inheritance will insure that all
other classes will inherit appropriate mix and submix
operations. Note that for most pairs of interaction object,
there will be several submix operators defined, with one
operator marked as the default, subject to user
customisation. Note that in a Smalltalk implementation,
the mix operator will typically contain a method dictionary
of submix operators, each of which can be implemented
using double dispatch.

ORIGINS OF DIRECT COMBINATION
Direct Combination is a broader version of ‘Slappability’
[4]. Slappability is essentially the systematic exploitation
of pair-wise interactions, together with an object-oriented
architecture to facilitate this, as outlined in the previous
section. The first system to support this idea systematically
was DMIX [4], an object-oriented environment for music
composition. See the next section for an example of
pairwise interaction as implemented in DMIX. The original
motivation behind slappability was to manage conversions
between different musical representations. Holland extended
slappability to the broader form presented here, Direct
Combination[2]. In this paper we present these extensions
in detail, including: new interaction techniques using
toolglasses and portals; the generalisation to the n-
dimensional case; analyses, definitions, principles, and
characterisations suitable for HCI purposes; terminology
such as ‘direct combination’, ‘visitor’, ‘probe’, ‘portal’, and
‘command needle’; and example applications and scenarios
outside of the musical domain, to illustrate the general
usefulness of the technique.

USES OF DIRECT COMBINATION
Musical Uses
As mentioned in the previous section, Oppenheim’s
implemented system, DMIX [4] offers numerous examples
of Direct Combination using a simple menu-based
technique. As also mentioned, the original motivation for
providing such a facility was to help users convert between
the diverse representations encountered in music systems. A
simple example of direct combination in DMIX is shown
in figure 4. This involves slapping a mathematical function
(here a sine function) onto a Bach prelude. The middle part
of Figure 4 shows a sine function displayed in the standard
graphical representation for function objects in DMIX. The
top part of Figure 4 shows Bach’s Prelude No. 1 as a
DMIX music object displayed using piano roll notation.

Papers CHI 99 15-20 MAY 1999

266

0.5 1.5 2.5 3.5 4.5 5.5

BachPelude1.Edit1

1.0 2.0 3.0 5.0

FunctionView: sine

4.0

0.5 1.5 2.5 3.5 4.5 5.5

BachPelude1.Edit1

Figure 4: A musical use of Direct Combination. A sine
function is slapped onto Bach’s Prelude No. 1 to modify the
pitches (or the dynamics, timbre or micro-timing).

In piano roll notation, the y-axis represents pitch and the x-
axis represents time. The horizontal bars scattered on the
diagram represent notes, each an object with various
attributes in its own right. The duration of a note is
indicated by its length. In DMIX, a slap is initiated by
keying command-S when the cursor is over the visitor (in
this case the sine function shown in figure 4). The cursor
changes shape into a hand holding a sine curve (see bottom
part of figure 4). The new cursor shape both indicates that a
slap has been initiated, and identifies the visitor. By
dragging the cursor in this state over the target (in this case
the Prelude) and releasing the mouse button, the slap is
executed. The default effect of a slap on an ordered pair
consisting of a mathematical function and a music object in
DMIX is that the music object takes new pitches from the
function. If the user does not want the default mix
operation, a menu of alternatives can be provided by
initiating the slap using Shift-S instead of command-S, in
which case a hierarchical menu of non-default operations is
popped up (not shown). In principle, a wide range of
alternatives operations could be provided for the interaction
of a function and a music object. For example, the function
might be applied not to the pitch, but to the rhythm, the
dynamics, the timbre, or the micro-timing. Similarly, the
function need not simply overwrite the previous values, it
could be used to add to them, or to multiply them, or to
vary them using any suitable mathematical relationship. To
appreciate the power of Direct Combination in DMIX, it
helps to realise that music objects can originate from a wide
variety of sources; from a file, an algorithm, a music editor,
or from a live performance. Direct Combination allows
musicians to craft performance nuances (via successively
applied functions) onto a piece of music (the music object)

originating from whatever source. A key benefit is that
users need know nothing about the originating format, or
about the tools normally required to work with that specific
format.

Uses In Problem-Seeking Domains
One interesting feature of Direct Combination discovered by
Oppenheim in the musical domain [4] was that the
inheritance of mix operations sometimes gave rise to useful
operations between pairs of object that had not been
explicitly foreseen by the system designer. In open-ended,
problem-seeking [3] or design-oriented domains, this is a
desirable property for fostering creative approaches. It
suggests that Direct Combination has considerable potential
as a design support framework for use in open-ended,
problem-seeking or design-oriented domains. On the other
hand, in safety-critical or enterprise-critical applications, the
existence of interactions with unforeseen behaviours might
be highly undesirable. However, designers who did not want
to permit unforeseen interactions could simply enumerate
and audit all possible combinations of object types and then
explicitly block any undesired interactions. The Direct
Combination principle demanding that all interaction
objects should be able to interact with each other is of a
heuristic and polemical nature rather than an absolute
requirement. A wealth of other musical examples can be
found in Oppenheim[4]. Oppenheim’s DMIX and the papers
written about it and the pieces composed with it furnish an
existence proof that Direct Combination is implementable,
usable, and produces useful results in at least one domain.
Direct Combination clearly excels at managing conversions
and interactions between different representations. Note that
the user interaction gestures used in DMIX are control key,
drag and drop, and menu mechanisms, rather than the
toolglass or portal mechanisms introduced here.

Exploring Large Spaces Of Operators
One purpose of this paper is to demonstrate that Direct
Combination is a widely applicable strategy, and not
limited to uses in design-oriented domains. In particular,
Direct Combination appears to be useful in more or less
any application where there are very many operations
defined on a variety of objects, and where the classification
system for these operations may not be immediately
apparent to the user. In such situations, users tend to
experience navigation problems, and have difficulties in
finding the relevant operations quickly. This is especially
true when the name of the operation may be unknown, hard
to guess, or when it is unclear even whether the operation
exists. These problems can apply to more or less any large
application program, such as well-known word processors.
For example, when dealing with an unfamiliar word
processor under an unaccustomed operating system, it may
be unclear how to convert a document to HTML. Similarly,
it may be hard to know how to itemise automatically the
differences between two drafts of a document originating

Papers CHI 99 15-20 MAY 1999

267

from an unfamiliar word processor. In both cases, Direct
Combination makes it possible to cut down the search
space simply by considering pairs of relevant objects. A
user wishing to carry out either operation might ‘browse’
the direct combination interactions available between two
relevant document files, as shown in figure 5.

Sample.html

My document.html

My document

Sample.html

includeappend

copy
styles

convert
format

use as
b/g

differ
-ences

Sample.html

My document

My document

SSll aa pp
SS ll aa pp

SS ll aa pp
SS ll aa pp

Figure 5: Converting the format of one document to the
format of another by Direct Combination through a
toolglass.

In the case of the format conversion, a sample document in
the desired format could be employed by the user to indicate
to the system which destination format is desired. In our
example, to carry out the conversion, the user simply drops
the document ‘My document’ through the ‘convert format’
region of the toolglass onto the sample target document
Sample.html. A third document is thereby created, namely
the first document converted to HTML format (figure 5).

ISSUES FOR DIRECT COMBINATION
Light Weight User Interfaces
Direct Combination can be implemented without the
expense of a second pointing device or the graphical
complication of the portals mechanism. For example,
figure 6 revisits the interaction between two documents
explored in figure 5 (the HTML conversion), but this time
using a simple menu-enhanced drag-and-drop. This
interaction style need not get in the way of ordinary drag
and drop, since the control key can be used to elicit Direct
Combination on dragging. Direct Combination can be
implemented in even more rudimentary interaction styles.

For example, a command line user interface parser could be
designed to make use of the techniques outlined in the
section on implementation to process commands with two
initial ‘nouns’ such as the following.

 > myDocument sample.html convertFormat
Similarly, Direct Combination can, if desired, be
implemented as a systematic extension of cut and paste,
rather than as a variant of direct manipulation.

Include
Copy styles
Convert to format
Show differences
Use as background
...
...

Append
Other Choice

Append
Other Choice

My document

Sample.html

Sample.html

My document

Sample.html

My document

My document
Sample.html

My document.html

Figure 6: The same interaction as in figure 5, using an
easily implemented, menu-based drag-and-drop version of
Direct Combination.

Design Of Space Of Mix Operations
There are several approaches for system designers to
determine which particular set of mix operations should be
made available for a particular ordered pair of classes of
interaction objects. One approach is to catalogue existing
operations and make them available via additional routes as
mix operations. This approach does not necessarily make
any new operations available, except perhaps to some
classes of interaction objects by inheritance, but it may
make these operations accessible in new ways. This
conservative approach is called Operator Re-use. By
contrast, the more constructive Operator Synthesis involves
systematically looking for new operations suitable for
defining on ordered pairs of objects. This approach can
make many new operations available. The search may be
carried out informally, on an intuitive basis of what

Papers CHI 99 15-20 MAY 1999

268

operations appear to be useful, or more systematically. For
example, one more systematic technique is to list the
attributes of each object, and then to look for ways in
which the state of one object can be used to alter the state
of another object. Similarly, one can use attribute lists to
look for ways in which new objects can be formed from
two given objects. Note that operator sets may depend on
the state of operands, as well as on their class. Where these
processes produce too many candidate mix operators, the
numbers can be reduced by expert pruning, or by
conventional usability techniques such as task analysis and
considerations of relative frequency of use.

N-DIMENSIONAL DIRECT COMBINATION
One of the key ideas of direct combination is to
systematically extend the number of direct manipulation
operations that are defined (and conveniently accessible) for
pairs of interaction objects. But there is no reason to stop
with pairs. In this section we show how Direct
Combination can be extended to deal with arbitrary n-tuples
of interaction objects simply and consistently. One
important constraint on the interaction design is that we do
not want any new elements of the interaction design to
interfere with existing ordinary direct manipulation actions,
or ordinary pairwise direct combination actions. So, for
example, it might be confusing if the simple selection of a
collection of interaction objects was taken as the invocation
of an n-fold direct combination. Such a selection might be
intended by the user simply as the first step in sending a
single menu command to the selected collection of objects,
which is a widely recognised direct manipulation idiom. A
better candidate interaction design uses the command needle,
described below (figure 7). The command needle is a new
interaction object that looks like a spike on a base. When
an interaction object is dropped on the needle, the object is
highlighted to show that the object is spiked, and not
merely placed close to the needle. The needle responds to
the spiking by displaying a menu showing available
commands. Of course, the commands displayed will vary
depending on the number and class of objects spiked on the
needle. This is best understood by means of an example.
This example is intended to illustrate the interaction style
and may not be an ideal example of a well-designed n-fold
direct combination operator set. Figure 7 shows a cut and
pasted area from a bitmap that has been pasted onto the
needle. This elicits a needle menu with several relevant
operations, including one shaded as a default (in the
example, Print . . .). The user may ignore the available
options, or may, in help mode, consult displayed
information about any selected option, or may execute a
selected option using the do it button. Note that in our
example, the Print operation happens to be accessible via
several routes from a variety of n-fold combinations using
one, two, three or four objects. The user should not be
expected to exhaustively catalogue all arguments to a

potential operation just to be offered that operation. Much
as conventional drag-and-drop operations may sometimes
provoke a dialog box or other intervention to solicit
additional parameters from a user, so it is with n-fold direct
combination. To continue with our example (figure 7), the
user chooses to spike a second object, namely a printer
icon. This alters the choice of operations on the needle
menu, any of which can be browsed for details, executed, or
ignored, as before. When two or more objects are spiked,
the spatial ordering of the objects top to bottom may, in
some circumstances, make a difference to the operations
evoked. This is because the designer may arrange for
differently ordered n-tuples to evoke different sets of
operations. However, the temporal order in which the items
are spiked does not matter. One of the (hidden) needle
preference controls allows the user to opt for the spatial
order of spiked items to be ignored, in which case all
relevant operations, irrespective of tuple order are made
available. It was noted earlier that the simple selection of a
collection of objects is not, by itself, an appropriate
interaction design for invoking direct combination
operations. Indeed, this observation led to the devising of
the command needle. However, a collection of interaction
objects may be selected together and then dropped as a
group on a command stick. In such a case, the temporal
order of selection is translated into spatial order of spiking,
i.e. temporal order becomes tuple order. To make it easier
for users to read the labels of items put on the needle, the
needle is by default arranged vertically. This tends to aid
legibility for labels in horizontally flowing languages (e.g.
European languages). But the needle may be rotated through
ninety degrees, if preferred. Continuing with our example,
two more items are spiked next, the integers 7 and 2 (figure
7). As it happens, this does not alter the choice of
operations offered. Selecting the ‘print’ operation now
displays a dialog box for printing 7 copies of the graphics
clip with a magnification of 2 at the specified printer. The
dialog box and its contents provides feedback on how the
selected operation is being interpreted. To alter this
interpretation, the dialog box could be edited, or
alternatively the order or identity of items on the spike
could be altered by direct manipulation, in which case the
changes would be reflected immediately in the dialog box.
Note that this close coupling between the contents of the
command needle and the dialog box avoids the restriction of
the user’s freedom identified in the earlier section on
argument objects. Indeed, in some respects, a command
needle is an open-ended direct manipulation version of a
dialog box. To complete our example, in figure 7, the user
finishes by changing some of the objects on the spike,
ending up with the original graphics clip, an email address,
a number, and a graphics document. In our example, just
one operation is finally offered on the needle menu for this
particular combination of objects. Selecting this operation
discloses via the dialog box the interpretation - namely to

Papers CHI 99 15-20 MAY 1999

269

email the bitmap clip to the given email address, at half
size, and converted to the format represented by the sample
PICT file. The do-it button causes this command to be
executed. When a command is executed, all icons fly back
to their original locations. Note that the implementation of
the n-fold case in languages like Smalltalk is much as in
the two-fold case, but with double dispatching on multiple
arguments. In CLOS, the implementation is even more
direct using multi-methods. The n-fold version of Direct
Combination may not have the immediacy of pairwise
direct combination, but it does appear to have applications
in helping users to constrain searches for operations in large
and unfamiliar command sets by considering the objects
involved.

CONCLUSIONS
We have presented a novel interaction strategy, Direct
Combination, that builds on traditional direct manipulation
techniques. Several Direct Combination styles using drag
and drop through a toolglass, portals, and other techniques
have been presented. We have shown how, in situations
where it is hard to locate commands from a large command
set, users may constrain their search space by an intuitive
consideration of what kind of objects are involved. By
focusing systematically on direct manipulation interactions
between two or more objects, we have identified a
framework that may have the potential to make a greater
range and variety of operations available to the user,
without overburdening user or interface designer. We have
demonstrated a variety of interaction styles that make these
strategies available without interfering with conventional
drag and drop or cut and paste. Novel interaction objects
such as the portal and command needle have been presented.
We have demonstrated that the strategy has plausible
applications much wider afield than design-oriented areas

such as music composition, in which the basic idea was
first devised and implemented. We have shown how the idea
can be usefully generalised to the n-dimensional case.

ACKNOWLEDGEMENTS
We thank Bill Gaver, who provided deftly targeted advice
and was a first-rate mentor. Mark Blurton-Jones and Rob
Griffiths took part in useful discussions. Tom Carey created
a much needed space to think about the problem.

REFERENCES
1. Bier E. A., Stone M.C., Pier K., Buxton,W., and
DeRose T. D. (1993). Toolglass and Magic Lenses: The
See Through Interface. Proceeding of SIGGRAPH 1993,
Computer Graphics Annual Conference Series, ACM,
1993, Pages 73-80.
2. Holland, S. (1998). Direct Combination: novel user
interaction strategies. Technical Report 98/20. Department
of Computing, Open University, Milton Keynes, England.
3. Holland, S. (1999). Artificial Intelligence in Music
Education: a Critical Review. In Miranda, E.R. (Ed.)
Readings in Music and Artificial Intelligence.
Contemporary Music Series, Vol. 20, Harwood Academic
Publishers, Amsterdam, Netherlands.
4. Oppenheim, D. (1996). DMIX: A Multi Faceted
Environment for Composing and Performing. Computers
and Mathematics with Applications, Volume 32, Issue 1,
pages 117-135, 1996.
5. Smith D., Irby C., Kimball R., Verplank B. and
Harslem E. (1982). Designing the Star User Interface. Byte,
7(4), 242-82.
6. Ungar, D. And Smith, R.B. (1987). Self: The Power of
Simplicity. ACM SIGPLAN Notices 22 (12), December
1987.

Colour LW

Do I t Do I t

7

2

Do I t

j.doe@doe.com

0.5

Print...
To clipboard

Email to..

Fax to

Magnify
Save as file

Do I t

Colour LW

my Doc.PICT

Email to...New device icon
New LW test sheet

New device icon
New LW test sheet

graphics clipPrint

To Colour LW

Copies 7
Magnification 2

graphics clipEmail

To
Convert to PICT

Magnification 0.5

j.doe@doe.com

Print... Print...

Figure 7: An example of n-dimensional Direct Combination using a Command Needle.

