
T e c h n i c a l R e p o r t N o 2 0 0 4 / 1 7

Applying Aspect-Oriented Programming to Music
Computing

Patrick Hill,
Simon Holland,
Robin C. Laney

28th May 2004

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

ISSN 1744-1986

Applying Aspect-Oriented Programming to
Music Computing

Patrick Hill

The Open University
Walton Hall

Milton Keynes.
MK7 6AA

PatrickHill@bcs.org.uk

Simon Holland
The Open University

Walton Hall
Milton Keynes.

MK7 6AA

s.holland@open.ac.uk

Robin C. Laney
The Open University

Walton Hall
Milton Keynes.

MK7 6AA

r.c.laney@open.ac.uk

ABSTRACT
Computer programs for the composition, performance and analysis of music generally involve
the tangled interaction of many dimensions of musical and extra-musical concern. In this
paper we introduce the concepts of Aspect-Oriented Programming (AOP) to Music
Computing and argue that AOP and related techniques and technologies form an appropriate
solution to the separation and composition of such concerns. We motivate our argument with
simple examples from the musical domain, but argue that the underlying principles may be
applied to a wide and expressive range of musical applications.

1. INTRODUCTION
Musical composition may be considered in terms of the construction of tangled hierarchies
[22] in which various musical dimensions are ‘woven’ together to form a ‘logical and
coherent musical whole’ [31]. This view of music is supported by the exposition of complex
musical interrelationships, presented by writers such as Miranda[22], Rowe[30], Lerdahl &
Jackendoff[18], Persichetti[26], Dannenberg et al.[9] and Piston[27]. These interrelationships
exist at different levels of musical abstraction, relate to different kinds of musical activities,
appear at different levels of detail and abstraction, and involve different kinds and dimensions
of music. Despite the diversity of these authors' concerns, we will argue that the common
issue of tangled hierarchies suggests that the techniques we will outline here are potentially
capable of very wide application in Computer Music.

Many music software systems exist that aim to assist in particular elements and tasks of
musical composition, analysis and performance. Each system effectively implements its own
partial musical ontology that maps to its areas of interest. However a difficult and pervasive
issue in developing computer music systems is that it is impossible to know, a priori, what
dimensions of concern are required and what relationships may be established between them,
and therefore what constitutes an appropriate musical representation. This is particularly true
since the needs, methods, and approaches of different composers vary so widely. The
situation is further complicated when these concerns and relationships may vary inter- and
intra-opus, potentially requiring dynamic reconfiguration of the software system itself.

Aspect Oriented Programming [17] and related principles and technologies such as Multi-
Dimensional Separation of Concerns (MDSoC) [24] are new emerging methods originating
from meta-object research [37] designed to enable software developers to manage the
separation and subsequent recomposition of separately defined dimensions of concern.
Moreover, one of the requirements of AOP is that it should enable non-invasive addition of
concerns [3] and therefore the approach goes some way to supporting the evolution of
software systems in which requirements are not, and indeed cannot, be known at the outset.
To the best of our knowledge, the present project [15], is the first time in which the
application of these technologies to musical concerns has ever been explored. In AOP, the
term concern is not always clearly defined. Loosely speaking a concern relates to those parts

of a software system, or application domain, that relate to a common purpose, goal or concept
[41]. Examples of concerns in the domain of software engineering include security,
persistence, and concurrency [16]. Examples of concerns in tonal music might include
harmony, melody and rhythm, or the four principal decompositions of Lerdahl and Jackendoff
[18].

We suggest that the AOP technique can be adapted and used to deal with crosscutting
concerns in music, with an extremely wide range of uses and applications. In this paper we
outline the principles of AOP and describe its application in addressing illustrative problems
that exist in various domains of computer music. For simplicity and clarity of examples, we
will mostly (though not exclusively) give examples from tonal music: However the principle
and the technology apply much more widely to music representation and composition in
general.

2. SEPARATION AND COMPOSITION OF CONCERNS IN MUSIC
Generally, music may be viewed as being composed of a finite set of musical elements that
are structured and manipulated in various ways by the composer in order to form a logical and
coherent whole.

While the output of a compositional process, in the tonal case, is often expressed as CPN,
composers typically do not think in terms of ‘dots on pages’ or detailed note-lists [23], but
rather in terms of higher-level structures, such as rhythmic motives, melodies, tone rows,
harmonic progressions, orchestration and so forth. The resulting score, CPN or otherwise,
may be viewed as representing the results of the composer’s detailed weaving together of
these various dimensions of concern, and given the extreme diversity of compositional
approaches, composers may wish to establish relationships of arbitrary complexity between
any set of musical dimensions.

When a piece of music is realised, interpretive practice introduces yet more dimensions of
concern. For example, phrases may articulated through changes in tempo and dynamic that
are not notated. When a piece of music is to be performed by computer, these performance
details must also be defined, procedurally or declaratively.

One of the key goals of AOP is to help in avoiding tangling and scattering [REF] by enabling
concerns to be separately specified and subsequently composed in a coordinated way [REF].
Broadly speaking, scattering refers to situations in which the realisation of a given concern is
distributed throughout other concerns. The related concept of tangling refers to situations in
which concerns are not properly separated, but instead an artefact implements multiple
concerns.

It is important to note that our proposals do not seek to impose any particular philosophy or
working methods on composers, analysts or performers. Indeed a key aim is to avoid any such
impositions, as should become clear below.

We now present two simple examples that are illustrative of two important, and
complementary, approaches to the separation and composition of concerns in software. These
approaches are embodied by Aspect Oriented Programming systems, such as AspectJ [40]
and Multi-Dimensional Separation of Concerns (MDSoC) [24] supported by Hyper/J [25].
We briefly outline these approaches and indicate how they might be used to manage the
issues arising from our examples. We have implemented [ref] several musical examples using
AspectJ, but for clarity and simplicity of exposition, hypothetical examples are used
throughout this paper. In order to make the rudiments of AOP techniques as clear as possible,
our first example does not deal with any tangling of musical dimensions at all: instead it
presents a version of a well-studied AOP example that deals with the tangling of purely
programming concerns. Having used this example to present the rudiments of AOP

unambiguously, our two subsequent examples illustrate (albeit in very rudimentary fashion)
ways in which AOP may be used to manage tangled musical concerns.

Example 1 – Crosscutting

Consider the design of a Common Practice Notation (CPN) editor. The editor enables the user
to enter and arrange CPN via a graphical user interface (GUI). The system also incorporates a
sequencer that enables the user to play the CPN as a MIDI sequence. The system permits the
user to edit the CPN while the sequencer is playing the piece.

However it is observed that so doing causes the sequencer’s timing to become distorted. One
of the possible causes of this variation in timing is thought to be the routines that update the
screen while editing takes place. The GUI has been designed using object-oriented principles,
in which each graphical symbol is derived from the class Glyph and is responsible for
rendering itself on the screen through its own implementation of the polymorphic method
draw().We therefore wish to be able to trace calls to the draw() methods of our various
Glyph-derived classes.

Since the draw() methods share no common implementation, this tracing concern cannot be
encapsulated using an object-oriented decomposition. Therefore an implementation of this
concern, using only object-orientation, must necessarily tangle the draw() methods with the
tracing concern, and scatter the tracing concern across all of the Glyph-derived classes. The
tracing concern is said to crosscut the class graph. A similar argument applies a fortiori when
the methods to be modified are scattered across classes with no relevant common root

AOP [17] enables crosscutting concerns [17] to be modularised into aspects [17] such that
tangling and scattering is avoided. Aspects are like classes, and can be specified separately,
but contain additional information (outlined below) that specifies exactly the diverse loci
(potentially scattered around the main program) where their behaviour is to be deployed.
Aspects therefore represent dimensions of concern that cannot be encapsulated within a single
dominant decomposition, such as an object-oriented class structure.

Having separated and modularised concerns, we need to consider how we might recompose
them. In the AspectJ [40] implementation of AOP, aspects are composed at well-defined
points in a programs execution, termed joinpoints [40]. Joinpoints are typically method calls
and member variable accesses. Each concern implementation is associated with a set of one or
more joinpoints, termed a pointcut [40], describing the points in the programs execution at
which the concern is to be invoked. The concern implementation itself, termed advice,
describes both the procedural elements of the concern implementation and its execution
position relative to the joinpoint. Before advice executes before the code invoked by its
joinpoint, after advice runs after the code invoked by its joinpoint. Around advice runs before
the code invoked by its joinpoint, but exerts control over whether the joinpoint is
subsequently executed. In this way, around advice may run instead of a joinpoint.

Thus, a possible AOP implementation of the tracing concern might be to encapsulate tracing
as an aspect that defines a pointcut consisting of all of the draw() methods that we wish to
trace, and an advice that defines our preferred tracing implementation, such a writing to a text
file.

Since pointcuts are declared within aspects, the ‘base code’ at which they are invoked is
unaware of the aspect’s existence. Consequently aspects may be applied and removed without
invasive modification of the base code. AOP is typically applied to object oriented systems,
but the underlying principles apply to software in general [12].

Example 2 – Multidimensional Separation of Concern

For this second example, we will consider higher-level concerns that might be addressed
using aspects. For purposes of exposition and for brevity the example is presented in a highly
simplified form.

Some concerns naturally extend across multiple, unrelated dimensions. For example consider
a system, such as that described by Zimmerman [39], in which a fixed set of musical materials
is required to be automatically composed and played in a variety styles, to convey various
ambiences according to some script or storyboard. Changes in ambience or mood may require
changes across many musical dimensions.

For the purposes of this example, we will consider a subset of the dimensions suggested in
[39], namely Tempo, Rhythm, and Harmony, and three sample ambiences, A,B and C.
MDSoC [24] avoids any dominant decomposition. Instead, MDSoC considers systems to be
described as abstract slices, hyperslices, of functionality encompassing any number of
dimensions of concern. Figure 1 illustrates conceptual hyperslices across tempo, rhythm and
harmony dimensions, that satisfy three of the ambiences described in [39].

Tempo Rhythm Harmony

Neutral

Syncopated

Increasing Tension

Flowing

Solving Dissonance

Fast

Neutral

Dissonance

Figure 1

A key feature of the MDSoC approach, and its support through the Hyper/JTM tool, is its
ability to achieve a ‘clean’ separation of concerns, and thus helps to reduce complexity,
facilitate evolution and non-invasive adaptation and customisation, and promote reuse, in part
by simplifying component integration. For example, we may wish to enable the composition
system to produce a new ambience D by configuring a different slice through the existing
implementations of the three dimensions, e.g. Tempo=Fast, Rhythm=Flowing,
Harmony=Increasing Tension, or we may also wish to replace the Harmony implementations,
say, to account for cultural differences and so forth. Using MDSoC, these changes may be
effected largely through the description of the desired hyperslices rather than invasive
software modification.

The implication is not that a composer should be constrained to use any particular simplified
system or representation or control: quite the reverse. The use of aspects or MDSoC allows
'what-if' experiments to be made with diverse evolving approaches of arbitrary complexity,
without invasive modifications of settled code. AOSD facilitates diverse experiments by
facilitating altering any number of concerns independently.

3. ISSUES OF MUSICAL REPRESENTATION
Musical representations allow the user, composer, analyst or performer, to represent musical
knowledge at an appropriate level of abstraction. However, as Smaill et al. point out [34],
there are an enormous number of ways of thinking about music, and this leads to a diverse set
of representations of which there is no single, all encompassing, representation.

A

B

C

Common Practice Notation and MIDI tend to focus on the principal perceptual dimensions of
tonal music; pitch, rhythm, timbre and volume [20]. However such representations have little
to say about musical structure. Conversely, structural representations, such as Structured
Music Pieces[4] and CHARM[34] permit the composer to express hierarchic temporal and
transformational relationships that exist between musical elements, but have no representation
of, for example, harmonic progressions or orchestration. Other approaches to representation
include declarative constraint-based systems [11][39], Grammars [6][5][18],
Patterns[32][8][7] and Processes[35][2]. A particular composer’s compositional process may
involve any mix of these, and other, representations. Cope’s EMI system [8], for example, is
based on patterns matching and grammars, while Cybernetic Composer [1] utilises style rules
and stochastic grammars. However, combining such approaches becomes problematic if the
external representation of a process does not expose symbolic information that is
subsequently required in other areas of the process.

To illustrate this, with a very simple tonal example, consider a system that is required to
generate arpeggio figures based on a sequence of symbolic chord representations, such as C,
C7, C6. One way to implement this system is to iterate through the chord symbols and simply
transform each chord into a set of MIDI pitch values from which the required arpeggio figure
may be algorithmically generated and the pitches played sequentially.

Such a process is illustrated in Figure 2 below

Figure 2

However, if we extend the system such that the exact arpeggio figure depends upon the chord
type, then MIDI ceases to be a useable representation for the interface between the modules,
since it does not convey the chord type directly nor it is possible to infer the chord type from
the pitch values themselves. Using aspects however, we are able to non-invasively intercept
the chord symbol as it is read, and make this information available to the arpeggiator. Thus
when the arpeggiator receives the MIDI events, it is aware of the chord type and can produce
the appropriate arpeggio figure. This is illustrated in Figure 3; the broken lines denote the
aspect.

In general, we believe that aspects can play a useful role in the integration of musical
applications in which symbolic state information is available within computational processes,
but is encapsulated and not externalised by the available representation. While some
representations, such as Structured Music Pieces [4] and MODE [28], permit arbitrary
attribute/value pairs to be associated within musical objects, these items do not extend across
representational boundaries, neither do they possess any inherent semantic value. Aspects,
conversely, have the potential to permit symbolic information to remain in its native location,
do not require arbitrary extension of representations and convey meaning through the use of
pointcuts and advice.

Read Chord Transform to MIDI Chord
Symbol

Arpeggiate
MIDI
Pitch
Values

Read Chord Transform to MIDI
Chord
Symbol Arpeggiate

MIDI
Pitch
Values

Chord
Symbol

joinpoint Advice

4. MUSIC COMPOSITION PROCESSES AND DYNAMIC AOP
While composers such as Schoenberg [31] and Hindemith [33] speak of having a ‘vision’ of
an entire work, other composers appear to work in an iterative fashion in which musical ideas
across various musical dimensions are sketched out and elaborated, often incompletely,
before the work is finally pieced together and completed [36][33].

Thus, not only are the musical dimensions themselves tangled, but so also are the cognitive
processes involved in their composition. Computer systems that support musical composition
should therefore allow the composer to work in an iterative, incremental and interactive
fashion with possibly incomplete musical material. We believe that aspects can help in
achieving these goals since they help to reduce and manage complexity, can be applied
without invasive modification, and have the ability to cross representational boundaries.

However, a key feature of music composition is that the relationships between musical
dimensions do not necessarily persist for the entire duration of a piece. Rather they are added,
modified, replaced or removed over time. Consequently, it would be desirable to be able to
dynamically insert, withdraw and modify aspects either interactively, or based upon musical
context. For example, a ‘crescendo’ aspect may be defined that simply modifies the dynamic
dimension. This could be replaced with a ‘crescendo’ that is achieved by changes in
orchestration or harmony. Further, the choice of ‘crescendo’ may depend upon context. For
example, a solo piano part may required a ‘dynamic crescendo’ while an orchestral interlude
may require an ‘orchestral crescendo’.

Systems such as AspectJ and Hyper/J both implement aspects statically at compile time.
Consequently, aspects do not ‘exist’, and therefore cannot be modified, at runtime. The
joinpoint model of AspectJ, in particular, ties aspects to the particular application in which
they are defined and makes it difficult, though not impossible [14], to define reusable aspects.

Nonetheless, emerging Dynamic AOP (DAOP) technologies do possess some of the features
that are required to support the dynamism and interactivity requirements outlined above. In
particular the techniques of Aspectual Components [19] and their realisation in systems such
as JAsCo [38] enable generic aspects to be defined and loaded at runtime. The Caesar system
[21] supports aspectual polymorphism in which the choice of aspect implementation may be
determined at runtime. Event-based approaches to DAOP, such as Axon [3], PROSE [29] and
EAOP [10], exhibit a synergy with the event-based nature of music and musical
representations such as MIDI. Logic metaprogramming approaches such as Andrew [13]
enable declarative and dynamic expression of pointcuts, which in this particular
implementation enjoys a symbiotic relationship with its Smalltalk environment.

5. CONCLUSIONS
In this paper we have outlined the basis of Aspect Oriented Programming and argued that
AOP offers a technique allowing us to manage the tangling and scattering of various
dimensions of concern that are inherent in many aspects of computer music.

We have identified two types of crosscutting that exist in music. Firstly, we have outlined that
situations in which musical concerns are scattered over multiple unrelated classes may be
represented and encapsulated as hyperslices using the MDSoC approach. We have shown that
it is possible to compose new concerns by generating new hyperslices through existing
functionality. Secondly, we have illustrated the application of aspects to situations in which
two or more complex, normally encapsulated representations may need to mutually affect
each other. In these situations, aspects obviate the requirement for a common representation
by permitting non-invasive access to state information held in any of the representations.

Finally we have outlined the ad-hoc and dynamic nature of many interactions between
dimensions of concern that arise in musical applications. We believe that Dynamic AOP may
be fruitfully applied to musical systems as a means to solving some of the issues of uncertain
requirements and system evolution that are evident within creative domains.

6. REFERENCES
[1] Ames. C., Domino. M. Cybernetic Composer: An Overview. In Understanding Music with AI. MIT Press.
 1992

[2] Anderson, D.P., Kuivila, R. Formula: A Programming Language for Expressive Computer Music.

IEEE Computer Vol 24. No 7. 1991

[3] Aussmann, S., Haupt, M. Axon – Dynamic AOP through Runtime Inspection and Monitoring. ASARTI
Workshop 2003.

[4] Balaban., M. Music Structures: ~Interleaving the Temporal and Hierarchical Aspects in Music. In

Understanding Music with AI. MIT Press. 1992.

[5] Beilharz, K.A. Observing Musical Composition as a Design Grammar. Key Centre of Design Computing and

Cognition.Department of Architectural and Design Science. University of Sydney. 2001

[6] Bel., B. Symbolic and Sonic Representations of Sound-Object Structures. In Understanding Music with AI.

MIT Press. 1992

[7] Conklin, D., Anagnostopoulou, C. Representation and Discovery of Multiple Viewpoint Patterns. In Proc.

International Computer Music Conference. 2001.

[8] Cope, D. A Computer Model of Music Composition. In Machine Models of Music. MIT Press. 1993.

[9] Dannenberg, R. B., Desain, P., Honing, H. Programming Language Design for Music. In G. De Poli, A.

Picialli, S. T. Pope, & C. Roads (eds.), Musical Signal Processing. 271-315. Lisse: Swets & Zeitlinger. 1997.

[10] Douence, R., Sudholt, M. A model and a tool for Event-based Aspect-Oriented Programming (EAOP) . TR
02/l 1/INFO, lcole des Mines de Nantes, french version accepted at LMO'03, 2nd edition, Dec. 2002

[11] Ebcioglu., K. An Expert System for Harmonizing Chorales in the Style of J.S. Bach. In Understanding Music

with AI. MIT Press. 1992

[12] Filman, R.E., Friedman. D.P. "Aspect-Oriented Programming is Quantification and Obliviousness."

Workshop on Advanced Separation of Concerns, OOPSLA 2000, October 2000, Minneapolis.

[13] Gybels, K. Aspect-Oriented Programming using a Logic Meta Programming Language to express cross-
cutting through a dynamic joinpoint structure. Ph.D. Thesis 2001

[14] Hannenberg, S., Unland, R. Using and Reusing Aspectsin AspectJ. OOPSLA 2001

[15] Hill, P., Holland, S., Laney, R. C. Using Aspects to Help Composers. Technical Report TR 2003/21. Open

University Dept of Computing 2003.

[16] Hürsch, W.L., Lopes, C.V., Separation of Concerns. Technical Report by the College of Computer Science.

Northeastern University. 1995

[17] Kiczales C., Lamping J, et al., Aspect-Oriented Programming. in proc. ECOOP 1997.

[18] Lerdahl, F., Jackendoff, R. A Generative Theory of Tonal Music, MIT Press, 1983.

[19] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with Aspectual Components. Technical Report, NU-

CCS-99-01, March 1999

[20] Loy, G., Abbott, C. Programming Languages for Computer Music Synthesis, Performance and Composition.

ACM Computing Surveys, Vol.17, No. 2. June 1985.

[21] Mezini, M., Ostermann. K. Conquering Aspects with Caesar. AOSD 2003.

[22] Miranda., E.R. Composing Music with Computers. Focal Press. 2001

[23] Oppenheim, D.V. Towards a Better Software-Design for Supporting Creative Musical Activity. ICMC 1991.

[24] Ossher H., Tarr P., Multi-Dimensional Separation of Concerns in Hyperspace. Research Report, IBM

T.J.Watson Research Center, 1999

[25] Ossher, H., Tarr. P. Hyper/JTM User and Installation Manual, IBM Corporation. 2000

[26] Persichetti, V. Twentieth-Century Harmony Creative Aspects and Practice. Norton. 1961.

[27] Piston. W. Orchestration. Gollancz. 1955.

[28] Pope, S. Introduction to MODE: The Musical Object Development Environment. In The Well-Tempered

Object: Musical Applications of Object-Oriented Software Technology, S. T. Pope, ed. MIT Press. 1991

[29] Popovici, A., Gross, T., Alonso, G. Dynamic weaving for aspect oriented programming. In Proceedings of the
1st International Conference on Aspect-Oriented Software Development, April 2002

[30] Rowe, R.Interactive Music Systems Machine Listening and Composing. MIT Press. 1993

[31] Shoenberg, A. (Strang F, Stein L. eds). Fundamentals of Music composition, Faber and Faber. 1967.

[32] Simon., H.A., Sumner., R.K., Pattern in Music. 1968. In Machine Models of Music. MIT Press. 1993.

[33] Sloboda, J.A., The Musical Mind. The Cognitive Psychology of Music. Oxford Science Publications. Oxford

University Press. 1985.

[34] Smaill, A., Wiggins, G., Harris, M. Hierarchical Music Representation for Composition and Analysis. 1993

[35] Smoliar., S.W., Process Structuring and Music Theory. 1974. In Machine Models of Music. MIT Press. 1993.

[36] Speigel, L. Old Fashioned Composing from the Inside Out: On Sounding Un-Digital on the Compositional

Level. Proceedings of the 8th Symposium on Small Computers in the Arts, Nov. 1988.

[37] Sullivan, G., T. Aspect-Oriented Programming using Reflection. OOPSLA 2001

[38] Suvée, D., Vanderperren., W., Jonckers., V. JAsCo: an Aspect-Oriented approach tailored for Component
Based Software Development. AOSD 2003.

[39] Zimmerman, D. Modelling Musical Structures. In Constraints Vol 6, pg 53-83. Kluwer Academic Publishers.

2001.

[40] The AspectJ Programming Guide, Xerox Corporation. 1998-2002

[41] http://www.research.ibm.com/hyperspace

