
An AspectMusic/J – Tutorial
DRAFT 1.0

June 2009

Patrick Hill

1 Introduction

The composition of music in many idioms involves the exploitation of
recurrent, recombinant musical fragments. Any given fragment may, as a
consequence, appear in arbitrarily many structures, in its original or
transformed state. Such a fragment is said to crosscut the musical structure,
in the sense that the modification of such a fragment implies that revisions
should be made to related structures.

Aspect-Oriented Music Representation (AOMR), is an approach to music
representation that, drawing inspiration from Aspect-Oriented Programming
(AOP) and cognate techniques in computer software, aims to reduce various
kinds of crosscutting in music. AOMR consists of two related representations.
The symmetric representation, in overview, enables fragments of music to be
encapsulated and associated with user-defined areas of compositional
interest. New fragments may be generated by specifying transformational and
combinatorial relationships with other fragments, by reference to their area of
interest. In this way, AOMR separates structure from content, and enables
crosscutting fragments to be stated once, with any subsequent revisions to a
fragment being automatically propagated to all related fragments.

In order to remain recombinant, each fragment must be independent of its
ultimate temporal location. The asymmetric representation of AOMR provides
an approach to the arrangement of fragments within a temporal framework,
and enables the content of fragments to be conditionally modified, based on
factors such as location, context and provenance.

AspectMusic/J is an implementation of Aspect-Oriented Music Representation
(AOMR) [1, 2] written in the Java language. In this implementation the
symmetric and asymmetric AOMR components are respectively named
HyperMusic and MusicSpace.

An important feature of the asymmetric component of AOMR is its provision
for declarative pointcut expressions. AspectMusic/J uses a strategy pattern [3]
architecture to enable different logic language implementations to be
“plugged-in”.

While AOMR itself prefers no particular concrete music representation,
AspectMusic/J is aimed at MIDI representations. As such, its default

AspectMusic/J Tutorial DRAFT 1.0

Page 2 of 24

representation of musical primitives, and accompanying tools support the
production of, and extraction of data from, MIDI sequences.

This tutorial is a non-exhaustive guide to AOMR and AspectMusic/J. Upon
completing the tutorial, the reader should be in a position to experiment with
AspectMusic/J. However, the references, JavaDocs and the AspectMusic/J
source code, particularly the demonstration package, should be consulted for
further detailed information.

2 HyperMusic

Symmetric AOMR and its realisation in the HyperMusic system, as described in
[2], supports the separation and composition of multi-dimensional musical
concerns. The principal constructs of HyperMusic, such as the Composed
Music Unit, Hyperspace and Hypermodules described below, may be
expressed as specialisations of more general structures. As a consequence,
the implementation of these constructs has been abstracted out to form Multi-
Dimensional Data Representation (MDDR) in the package mddr. In
AspectMusic/J, the HyperMusic system is an extension of MDDR and is
implemented in the package aspectmusicj.HyperMusic.

2.1 Composed Music Units

The Symmetric component of AOMR, as explained in [1, 2], is concerned with
the construction of reusable music fragments which are expressed as
Composed Music Units (CMUs).

CMUs are implemented by the AspectMusic/J class ComposedMusicUnit, which
extends the MDDR class mddr.ComposedDataUnit.

The structure of a CMU is effectively the same as described in [1, 2]. However
there is a slight change in nomenclature that, it is hoped, clarifies the purpose
of the various components of a CMU.

In AspectMusic/J, a CMU contains one or more Voiced Music Units (VMU),
each associated with a classifier name that broadly specifies the kind of
information that the VMU contains. VMUs are implemented by the class
VoicedMusicUnit. which maps a voice identifier (integer) to a Single-Voiced
Music Unit (MU) implemented by MusicUnit.

Each MU is a collection of MusicUnitItem objects, which are, in turn, a thin
wrapper around the MDDR class DataItem. DataItem, and therefore
MusicUnitItem, instances encapsulate an arbitrary object with a composition
history. AspectMusic/Js implementation of Composition History is described in
Section 4.3

AspectMusic/J Tutorial DRAFT 1.0

Page 3 of 24

2.2 Hyperspace

Drawing inspiration from MDSoC [4], in Symmetric AOMR, each CMU is
contained by a structure termed a Hyperspace. The key purpose of the
hyperspace is to provide a coordinate system, consisting of the triple
Dimension, Concern and Unit name, by which each contained CMU is uniquely
addressed.

Dimensions, concerns and unit names are arbitrary string values. Thus AOMR
users are able to organise CMUs within the hyperspace according dimensions,
concerns and names that are meaningful to them.

In AspectMusic/J, the hyperspace is implemented by the MDDR class
Repository.

2.2.1 Hyperspace Persistence

The ability to persist a hyperspace, and its contents, provides a means
through which musical ideas expressed using the AOMR formalism may be
saved, versioned and shared.

In our original (Smalltalk) AspectMusic implementation, a hyperspace and its
content can be persisted between interactive sessions in two ways. Firstly,
any existing hyperspace would naturally be persisted as part of a Smalltalk
image. Secondly, the Smalltalk implementation of Hyperspace includes
methods that enable hyperspace instances to be written to and read from a
separate file using the Binary Object Storage System (BOSS).

Java does not benefit from the concept of an image. However, AspectMusic/J
does provide the ability to save and load hyperspaces.

Hyperspace persistence is achieved using Java’s XMLEncoder and XMLDecoder
to write and read MDDR Repository structure and content as XML data.

Any Repository is capable of being saved and loaded so long as its content
conforms to Java’s XML encoding rules or a suitable encoding delegate is
provided. The HyperMusicRepositoryPersistenceHelper provides an easy
way of reading and writing hyperspace instances. This class automatically
configures the required persistence delegates for all the standard
AspectMusic/J primitives. In addition, the helper is also capable of
transparently creating and using compressed XML repository images.

It is possible to extend AspectMusic/J to support persistence for other
primitive types.

AspectMusic/J Tutorial DRAFT 1.0

Page 4 of 24

2.3 Composition Specifications

A composition specification (formerly hypermodule specification) describes
how a new CMU is to be produced through composition and transformation of
CMUs in a Repository. A composition specification, consists of five parts,
described below.

2.3.1 Repository

The repository specifies a repository instance from which CMUs will be drawn
and into which the resultant CMU will be placed.

2.3.2 Module Location

The Module Location specifies the Repository coordinates of the resultant
CMU.

2.3.3 Composition Expression Tree

The composition expression tree value is the root node of a tree that specifies
the composition operation to be performed. AspectMusic/J provides an
expression evaluator that produces an appropriate expression tree given a
String representation of the desired composition expression.

The default expression language enables CMUs to be referenced by
Repository location using semicolon-separated regular expressions for
Dimension, Concern and Unit Name. This approach supports both extensional
and intensional specification of CMUs.

By default, the binary sequential and parallel composition operations are
represented, respectively, by the symbols + and |. The unary evaluation
operator is represented by a prefixed @. Square brackets may be used to
enclose parameters, expressed as key-value pairs. Parentheses may be used
to express evaluation precedence.

For example, the following composition expression represents the evaluation
of a CMU which results from the sequential composition of the CMU stored a
location Rhythms;Motive;Motive1 with that stored at
Transformations;General;Retrograde. The single parameter “voice” is passed,
with the value “1”.

AspectMusic/J Tutorial DRAFT 1.0

Page 5 of 24

@(Rhythms;Motive;Motive1 +
Transformations;General;Retrograde[voice=1])

2.3.4 Composition Strategy

As has been noted above, CMUs that are to participate in a composition
expression may be specified extensionally or intensionally.

An extensional specification specifies hyperspace locations without using
regular expressions. As a consequence only those CMUs that exist at the
exact locations specified will be selected.

An intensional specification, in contrast, uses at least one regular expression
within a CMU location. As a consequence, the selection of CMUs to be
composed will depend on the repository content at the time the composition
is executed. It is possible, and probably desirable, that the Repository may
contain multiple matches for an intensionally specified CMU. A composition
strategy specifies what action should be taken in order to resolve multiple
matches.

Two composition strategy implementations are supplied with AspectMusic/J.
These are “mergeByName” and “overrideByName”. The mergeByName
composition strategy sequentially composes, in ascending address order, all
those CMUs that match the given repository address. The overrideByName
strategy selects only the last matching CMU, again ordered by repository
address.

2.3.5 Hyperslices

It may be that only a subset of the content of the Repository should be
considered when evaluating a composition expression. A hypermodule’s
hyperslice specification specifies the Dimensions, Concerns and Unit name
patterns that should be considered when selecting CMUs from the Repository.

2.4 The CMU Transformation Framework

As we have described, the ability to derive CMUs from other CMUs is
fundamental to the symmetric component of AOMR. One way in which CMUs
may be derived is through combinatorial operations such as sequence and
parallel. Another important method is transformation.

In AOMR, transformation is a two phase process. In the first phase,
transformation implementations are (sequentially) composed into a special
“transform” classifier within a CMU. In the second phase, the CMU is
“evaluated”. Evaluation of a CMU causes all of the transformations in its

AspectMusic/J Tutorial DRAFT 1.0

Page 6 of 24

transform classifier to be applied, producing a CMU with no transformations in
its transform classifier. The scope of a transformation is, therefore, the CMU
in which it is evaluated. The separation of composition and evaluation stages
means that transformations are “first-class” citizens of the AOMR world, being
conceptually equal to music primitives such as pitch, rhythm and dynamic.

The transform classifier name is given by the constant
ComposedMusicUnit.TRANSFORM_CLASSIFIER.

2.4.1 The Transformation Process

In order to transform a CMU, one or more transformations must be composed
into the CMU and then the CMU must be evaluated. Both the composition and
evaluation phases are, therefore, specified by composition expressions.

Transformations always compose in sequence. The default parallel and
sequential composition operators provided by AspectMusic/J implement the
required behaviour.

2.4.2 Parameters and Parameter Injection

While certain kinds of transformation do not require it, it is desirable to be
able to define transformations whose operation may parameterised. A “pitch
transpose” transformation, for example, might take a parameter indicating the
number of semitones by which each pitch is to be transposed.

It is important to understand that in AOMR transformations are not executed
directly. Rather, they are implicitly executed as part of the evaluation of a
CMU that contains them.

To illustrate this, consider the following example.

@(Rhythms;Motive;Motive1 +
Transformations;General;Transpose[delta=5])

This composition expression specifies that the CMU “Motive1” is to be
sequentially composed with the CMU “Transpose” and then evaluated. The
“Transpose” CMU is given the parameter “delta” with the value “5”.

When the composition strategy implementation resolves a CMU specification
to one or more CMUs, it injects any specified parameters into those CMUs.
The CMUs, in turn, pass the parameter values to the transformations held in
their transform classifier.

The evaluation process then executes each transformation contained by the
transform classifier of the evaluated CMU, returning a new CMU.

AspectMusic/J Tutorial DRAFT 1.0

Page 7 of 24

2.5 Composition History

Symmetric AOMR is concerned with the evolution of musical fragments from
other fragments through combination and transformation. Composition
History is a feature of AOMR which enables the derivation of any CMU
element to be obtained.

Composition History is implemented by the MDDR classes
mddr.CompositionHistory, mddr.CompositionHistoryItem and
mddr.CompositionHistoryItemFactory. A CompositionHistory is simply a list
of CompositionHistoryItems. As described above, a DataItem wraps a
CompositionHistory instance with the object to which the history applies.

MDDR implements two kinds of composition history item, namely Repository
Location and Transformation History.

Repository Location items record the location of a DataItem when its
containing CMU is added to a repository. By default, Repository adds a
Repository Location history item to the history of each DataItem contained by
a CMU whenever the CMU is added to the repository.

Transformations may add composition history items to transformed elements.
The CompositionHistoryItemFactory can provide instances of suitable
CompositionHistoryItems for classes derived from MDDR’s
AbstractCDUTransformation class. However, it is the responsibility of the
derived class to add these history items to those items that it transforms.

2.6 Working with HyperMusic

2.6.1.1 Create a Hyperspace

The main focus of work within HyperMusic is the hyperspace. A hyperspace is
created simply by invoking its constructor. If you wish, you can name the
hyperspace.

 Repository hyperspace = new Repository();
 hyperspace.setName("MyHyperspace");

2.6.1.2 Populate CMUs

In general, work with HyperMusic involves creating new CMUs by combining
and transforming CMUs already in the hyperspace. Clearly, however, it is
necessary to provide an initial CMU population to work with.

AspectMusic/J Tutorial DRAFT 1.0

Page 8 of 24

The following code fragment shows a CMU being populated with a simple
melody.

ComposedMusicUnit tuneCMU = new ComposedMusicUnit();
 String[] tune = new String[]{"A4", "B4", "C#5", "G#4", "A4"};
 for (String pitch : tune) {
 tuneCMU.addItem(

ComposedMusicUnit.PITCH_CLASSIFIER,
1,
Pitch.getPitch(pitch));

 }

The CMU may then be added to hyperspace at the required address.

 hyperspace.putUnit("Melody", "Motive", "Motive1", tuneCMU);

2.6.1.3 Initialise the HyperMusic Compiler

Before composition specifications can be compiled to produce new CMUs, the
compiler environment must be initialised. AspectMusic/J provides convenient
factory methods to initialise a default environment.

HyperMusicComposer composer =

ComposerFactory.getStandardComposer();

The default composer automatically registers the default implementations of
overrideByName and mergeByName composition strategies, respectively
against the names “overrideByName” and “mergeByName”.

CompositionExpressionParser parser =

CompositionParserFactory.getStandardParser();

The default expression parser automatically registers the default sequential
composition, parallel composition and evaluation operations, respectively
against the operators + , |and @. The default expression parser expects
parameters to be expressed as key=value pairs, enclosed by square brackets.
Parenthesis may be used to indicate precedence.

2.6.1.4 Compose New CMUs

As we have described, new CMUs are constructed by compiling composition
specifications. The following fragment shows how the five elements of a
CompositionSpecification, described in section 2.3, are populated.

CompositionSpecification cspec = new CompositionSpecification();
cspec.setCompositionStrategy("mergeByName");
cspec.setRepository(hyperspace);
cspec.setModuleLocation("Themes", "Melody", "Melody1");
cspec.addRepositorySlice(new RepositoryLocation(".*", ".*", ".*"));
cspec.setExpressionTree(parser.parse(".*;.*;Motive1"));

AspectMusic/J Tutorial DRAFT 1.0

Page 9 of 24

This example creates a CMU stored at the location “Themes;Melody;Melody1”.
The expression “.*;.*;Motive1” matches all CMUs named Motive1,
irrespective of their concern and dimension. The mergeByName composition
strategy specifies that all matched CMUs will be sequentially composed. The
repository slice specification includes the whole repository. Consequently, the
CMU created by this composition specification will contain all CMUs named
“Motive1”, sequentially composed.

To compose the CompositionSpecification, call

 composer.compose(cspec);

Working with HyperMusic typically involves creating and executing a sequence
of CompositionSpecifications. The CompositionSpecificationPackage class,
which is a thin wrapper around LinkedList<CompositionSpecification>,
enables a sequence of CompositionSpecifications to be created. The
HyperMusicComposer’s compose method is defined for
CompositionSpecificationPackage, enabling an entire package to be
compiled in one go.

2.6.2 Saving and Loading Repositories

AspectMusic/J is capable of saving repositories to an XML representation, and
creating populated repositories from this representation. A helper class
(HyperMusicRepositoryPersistenceHelper) is provided to simplify the
processes involved. The XML representation may be written as a text file, or
compressed to a ZIP file. The helper contains methods for both saving and
loading uncompressed and compressed formats.

HyperMusicRepositoryPersistenceHelper persistenceHelper =
new HyperMusicRepositoryPersistenceHelper();

 // To save hyperspace to compressed XML file
persistenceHelper.saveZip(hyperspace, "Hyperspace.xml");
// To load hyperspace from compressed XML file
hyperspace = persistenceHelper.loadZip("Hyperspace.xml");

3 MusicSpace

Much of the re-usable nature of CMUs derives from the fact that CMUs are,
like Music Structures [5], defined independently of their final temporal
locations, if indeed they have any. Of course, to form part of a given musical
composition, the content of selected CMU instances must be associated with
particular temporal locations.

As described in [1, 2], AOMR’s asymmetric component, which is influenced by
asymmetric approaches to Aspect Oriented Programming, provides a

AspectMusic/J Tutorial DRAFT 1.0

Page 10 of 24

framework in which CMU content may be arranged in time. This framework
additionally provides a means through which CMU content may be varied, in
arbitrary ways, and in response to arbitrary contextual conditions. These
conditions and variation implementations are encapsulated as Aspects which
are applied through a process of compilation.

MusicSpace is AspectMusic/J’s implementation of asymmetric AOMR.

3.1 MusicSpace Aspects

A MusicSpace aspect is a Java class that encapsulates some behaviour,
termed advice, with a description of those conditions that must be satisfied in
order for the advice to be invoked, termed a pointcut. MusicSpace aspects
have both before- and after- advice respectively associated with before- and
after- pointcuts. The purpose of before- and after- pointcut evaluation is
described in section 3.2.

In addition to pure Java aspects, AspectMusic/J supports MusicSpace aspects
that use a logic language. In this configuration, aspects are able to evaluate
declaratively specified pointcuts, expressed as logic queries. The results of
such queries are made available to advice implementations.

3.2 MusicSpace Compilation

In MusicSpace, a populated aspectj.MusicSpace.MusicSpace instance is
compiled against a set of MusicSpace aspects in order to produce a new
MusicSpace instance. The set of aspects to be considered in a compilation is
managed by an AspectManager instance, implemented by
aspectmusicj.MusicSpace.AspectManager.

In AOMR, as described in [1, 2], the compilation of a MusicSpace takes place
using a single pass through the MusicSpace content. The compilation process
involves iterating through the tick positions of the MusicSpace and invoking
registered aspects passing a joinpoint context object, containing the tick
position and details of those events, if any, that start at that position.

The before-pointcut of each aspect is evaluated and, if satisfied, the before-
advice is executed. Before advice may modify the joinpoint context which,
when the before-point of every aspect has been evaluated, is written to the
output MusicSpace instance. The (possibly modified) joinpoint context is then
passed to the after-pointcut of each aspect. If an aspect’s after-pointcut is
satisfied, then its after-advice is invoked. After-advice may not modify the
output MusicSpace instance, but may be used to modify the state of the
aspect or the aspect manager.

AspectMusic/J Tutorial DRAFT 1.0

Page 11 of 24

3.2.1 Multi-Pass Compilation

One problem with a single-pass compilation approach is that the resultant
MusicSpace may not be consistent with the set of aspects that produced it.
This situation arises if an aspect modifies the content of the MusicSpace prior
to its joinpoint since the single pass compilation will, by definition, never re-
evaluate the modified joinpoints.

At first sight, it seems that it is possible to simply re-evaluate those joinpoints
that are changed by an advice. However this approach does not account for
aspects that consider events at those modified joinpoints but are not
themselves evaluated at those joinpoints. For example, an aspect A at a
joinpoint J may consider events in the MusicSpace within a window of T ticks
in advance of J. Changing one or more events within the window would not
cause J to be re-evaluated. Of course the situation becomes more complex
when aspects dynamically choose the joinpoints of interest.

The solution chosen for AspectMusic/J is to implement a multi-pass scheme.
Using this approach a MusicSpace instance is compiled to produce a resultant
MusicSpace. The result is then compiled against the same set of aspects. The
process is repeated until either no advice are executed or the number of
passes exceeds some user-defined value.

However, a new class of MusicSpace aspects arises as a consequence of this
approach. In particular, it is desirable within a compilation to apply certain
aspect types at most once at any given joinpoint irrespective of the number of
passes within the compilation cycle.

3.3 Working with MusicSpace

3.3.1 Create MusicSpace Aspects

MusicSpace aspects are derived from the class
aspectmusicj.MusicSpace.AbstractAspect.

This class requires subclasses to provide implementations of
beforePointcut(), beforeAdvice(), afterPointcut() and afterAdvice()
methods.

If the aspect is required to use logic-based pointcut expressions, then the
aspect implementation should be based on
aspectmusicj.MusicSpace.AbstractLogicAspect which requires only
beforeAdvice() and afterAdvice() implementations.

AspectMusic/J Tutorial DRAFT 1.0

Page 12 of 24

MusicSpace aspects must be annotated @MusicSpaceAspect. By default, all
MusicSpace aspects so annotated are considered not to be repeatable
instances. In other words, the aspect’s before-advice will be invoked at most
once per joinpoint. If the before-advice is to be invoked as many times as the
before-pointcut is satisfied, then it must be annotated as
@MusicSpaceAspect(repeatableInstance = true)

In the current AspectMusic/J implementation, it is not possible to
automatically determine if an aspect’s before-advice has modified the
joinpoint context. Consequently, the advice must notify the MusicSpace
system itself. This process has been made as simple as possible, requiring
only that the advice calls markMusicSpaceAsModified() on the joinpoint
context.

3.3.2 Create a Logic Repository

In order to use aspects that use logic-based pointcut expressions, a logic
repository must first be created. AspectMusic/J provides a general interface
ILogicRepository, described in section 5.2, that can be used to connect
AspectMusic/J to a variety of logic language implementations. A default
implementation, that works with the open source JLog1 Java/Prolog
implementation is provided by the class JLogRepository.

The JLogRepository instance must be initialised with a knowledge base that
defines the predicates that your aspects will need. In the following example,
the knowledge base is provided in text file “kb.pro”.

 ILogicRepository logicRepos = new JLogRepository();
 logicRepos.initialise("kb.pro");

3.3.3 Create a MusicSpace Structure

A MusicSpace structure consists of a MusicSpace instance containing one or
more named parts, each represented by a MusicSpacePart instance. A
MusicSpace is created by calling its constructor and, if required, passing an
initialised ILogicRepository instance.

 MusicSpace musicSpace = new MusicSpace(logicRepos);

MusicSpacePart instances may be managed by the MusicSpace itself. The
simplest way to obtain a MusicSpacePart instance is to call
getOrCreatePart() as illustrated below.

 MusicSpacePart part1 = musicSpace.getOrCreatePart("part1");

1 http://jlogic.sourceforge.net/

AspectMusic/J Tutorial DRAFT 1.0

Page 13 of 24

By default, MusicSpaceParts default to a “common time” time signature.
However, a different time signature may be set.

part1.setTimeSignature(TimeSignature.sixEight());

3.3.4 Populate Parts with CMUs

Once a part has been created it can be populated with the contents of a CMU
using the putCmuEvents method. The following example shows how to
retrieve a CMU from a repository, and place its contents into a
MusicSpacePart starting from the first beat of the first bar.

ComposedMusicUnit myCMU = (ComposedMusicUnit)

hyperspace.getUnit(
new RepositoryLocation("Themes", "Melody", "Melody4"));

 part1.putCmuEvents(1,1,0,myCMU);

3.3.5 Instantiate and Initialise Aspects

Aspects must be instantiated and initialised prior to MusicSpace compilation.
The exact process will depend upon the aspect implementations being used.

The following code fragment shows an instance of
aspectmusicj.demos.StaccatoAspect being created and initialised. In this
example, StaccatoAspect is a logic-based aspect, derived from
aspectmusicj.MusicSpace.AbstractLogicAspect. Its before-pointcut is set
using the setBeforePointcutQuery method. The before-pointcut will be
satisfied if the joinpoint context contains an event in the MusicSpacePart
called “part1” where the pitch dimension of the event is derived from a CMU
called “Melody1”. The logic representation of joinpoints is discussed in more
detail in section 4.4.

StaccatoAspect staccato = new StaccatoAspect();
HashSet partSet = new HashSet();
partSet.add("part1");
staccato.setTargetParts(partSet);

staccato.setBeforePointcutQuery("history(part1,pitch,_,_,repositoryLo
cation(X)), member(param(unit,\"Melody1\"),X)");

3.3.6 Register Aspects

Before a MusicSpace can be evaluated, an AspectManager must be created,
and all the MusicSpace aspect instances that are required to be evaluated
must be registered with it. Each aspect instance is named.

AspectMusic/J Tutorial DRAFT 1.0

Page 14 of 24

 AspectManager am = new AspectManager();
 am.registerAspect("Staccato", staccato);

3.3.7 Compiling the MusicSpace

A MusicSpace is compiled by an instance of MusicSpaceCompiler, as follows.

 MusicSpaceCompiler compiler = new MusicSpaceCompiler();
 MusicSpace newMusicSpace =

compiler.compileWithAspectManager(musicSpace,
am,
12000,
15);

Note that since it is not possible to be sure when compilation ends, the
compileWithAspectManager method requires the maximum number of ticks to
be specified, in this case 12000. If the value “-1” is specified for the
maximum number of ticks then three times the number of ticks in the
MusicSpace being compiled will be evaluated.

In addition, the tick resolution may be specified. In this example, ticks will be
generated in steps of 15 up to a maximum of 12000.

Compilation will continue until no further modifications are made by any
aspect, or until the maximum number of iterations is reached. By default, the
maximum number of iterations is five. This value can be modified using the
MusicSpaceCompiler’s setMaxIterations method.

The result of the compilation is a new MusicSpace instance.

AspectMusic/J Tutorial DRAFT 1.0

Page 15 of 24

4 The Default AspectMusic/J Implementation of
AOMR.

As has been explained, AspectMusic/J is both a Java framework for AOMR and
an AOMR implementation. While AOMR itself prefers no particular concrete
music representation, the default AOMR implementation provided by
AspectMusic/J, in terms of the default primitives and supporting tools, is
aimed at a MIDI environment.

4.1 Music Representation Objects

AspectMusic/J provides four kinds of music representation objects; Pitch,
Chord, Rhythm and DynamicLevel.

Pitch, Rhythm and DynamicLevel primitives are created by factory methods.
For any given value, only one instance is created. Instances are immutable.
Mutator methods delegate to the factory to return instances that represent a
suitably mutated object.

4.1.1 Pitch

Pitch is represented by the Pitch class. Pitch instances are created on demand
through the (static) factory method getPitch().

4.1.2 Rhythm

Rhythm, in terms of onset and duration, is represented by the Rhythm class.
Rhythm instances are created through the factory method getRhythm().

4.1.3 DynamicLevel

The DynamicLevel class represents note loudness. Instances of DynamicLevel
are obtained through the factory method getDynamicLevel().

4.1.4 Chord

The Chord abstraction aggregates Pitch objects in order to provide a
convenient solution to the problem of voiced vs. unvoiced representations,
which we shall describe below.

AspectMusic/J Tutorial DRAFT 1.0

Page 16 of 24

The interpretation of the CMU structure of an earlier version of AOMR [6] was
such that a CMU could represent only a homorhythmic fragment. Under this
interpretation, a rhythm classifier was single-voiced, while a pitch classifier
was permitted to contain multiple voices. The interpretation associated each
rhythm value with all the pitch elements at the corresponding index.

The limitations which such an interpretation place on the representational
capabilities of a CMU are quite severe. Consequently, the approach was
revised to the current approach in which the CMU can represent multiple,
rhythmically independent voices.

Any homorhythmic CMU can be represented using this new approach.
However, a consequence of the approach is that it requires the user to specify
rhythmic patterns “horizontally”, in terms of discrete monophonic voices,
rather than “vertically” in terms of note clusters following a single rhythmic
pattern. When dealing with irregularly voiced or unvoiced music, the
requirement to specify the rhythmic characteristics of each note of each
chord, can become somewhat cumbersome.

The Chord class offers a solution to the specification of homorhythmic
structures. A Chord instance, as might be expected, represents an ordered
collection of Pitch objects. Crucially, however, a Chord instance can be
assigned to a single voice. As a consequence, Chords can be interpreted
homorhythmically.

4.2 MIDI Representation

It is useful to draw a distinction between representation and interpretation.
AOMR is rather abstract and focuses on representation, deferring issues of
interpretation to a particular AOMR implementation.

In an AOMR implementation, interpretation is the job of those components
that transform or “render” an AOMR representation into a music
representation that can be visually or audibly perceived. The default
implementation of AspectMusic/J contains components that can render CMU
and MusicSpace structures as MIDI files. Consequently, it is these
components that provide the default interpretation.

These renderers attempt to form MIDI events from the triple of pitch,
dynamic level and rhythm. Pitch, DynamicLevel and Rhythm primitives
representing the parameters must exist respectively in the classifiers named
by the constants ComposedMusicUnit.PITCH_CLASSIFIER,
ComposedMusicUnit.DYNAMIC_CLASSIFIER and
ComposedMusicUnit.RHYTHM_CLASSIFIER.

AspectMusic/J Tutorial DRAFT 1.0

Page 17 of 24

4.3 The Logic Gateway

As we have described, AspectMusic/J represents musical events described by
JoinPoints as complex object graphs. One disadvantage of this approach is
that the logic required to determine whether or not a joinpoint satisfies a
given pointcut condition is both procedural and arbitrarily complex.

Asymmetric AOP systems, such as AspectJ, support the notion of “declarative
pointcuts”. In other words, the pointcut expression states only those
conditions that must hold in order for the pointcut to be satisfied.

In order to support declarative pointcuts, AspectMusic utilises the services of
the Smalltalk Open Unification Language (SOUL) [7]. AspectMusic/J, in
contast, does not prescribe a logic language implementation. Rather, the
interface between AspectMusic/J and any given logic language
implementation is prescribed by two interfaces (ILogicRepository and
ILogicReifier) and one class (LogicSolution). These are defined in the
package aspectmusicj.LogicGateway.

The two interfaces, ILogicRepository and ILogicReifier, respectively
describe an abstraction of a logic system, and a translator that can convert
from AspectMusic/J’s object representation to the representation required by
that logic system. For convenience, the LogicGateway package provides
PrologReifier, an implementation of ILogicReifier for logic systems that
use PROLOG’s standard syntax.

The class, LogicSolution, describes the form that is used by an
ILogicRepository implementation to convey results from the logic system to
AspectMusic/J.

Thus, a logic system may be integrated into AspectMusic/J by providing an
implementation of ILogicRepository, and, if necessary, ILogicReifier. The
Java logic system JLog [8] has been found to work well with AspectMusic/J. A
Logic Gateway implementation for JLog is provided in the package
aspectmusicj.JLogGateway.

4.4 Logic Representation of Joinpoint Context

When a MusicSpace is evaluated, the compiler will formulate, at each tick, a
Joinpoint context containing an representation of the events whose onset
coincided with that tick. In order to use logic-based Aspects it is necessary to
understand how a JoinpointContext is expressed using the logic
representation.

The JoinpointContext consists of three main parts; metrical location, event
description, and composition history.

AspectMusic/J Tutorial DRAFT 1.0

Page 18 of 24

4.4.1 Metrical Location

The metrical location of a joinpoint context is described by a cuepoint/2
predicate.

cuepoint(partName, location(bar,beat,tick))

Each cuepoint associates the name the MusicSpace part to which it relates
with a location/3 predicate that describes the metrical location (bar, beat,
tick) of the joinpoint context with respect to that part.

4.4.2 Event Description

The detailed description of the events whose onset coincides with the
joinpoint is given by event/4 predicates.

event(partName,classifierName,voiceNumber,value(V))

The representation of the event parameter (V) depends upon the type of
event being represented. Examples of the default Rhythm and Pitch event
types are shown below.

rhythm(relativeOnset(0),duration(240),nextOnset(0))

pitch(midiPitch(41),pitchClassAndOctave("F3"))

The aspectmusicj.LogicGateway.PrologRefier implementation uses the
following rules to generate event descriptions.

1. The event name is the simple name (ie without package name) of
the event class, in lower case.

2. The parameters associated with the event are the elements of the
set of getter method names and values for each
@AspectMusicProperty-annotated getter method. The getter method
name is manipulated to drop the initial “get” and convert the first
character of the resulting name to lower case.

For example, consider the aspectmusicj.MusicPrimitives.Pitch class. By
rule 1, the event name for instances of this class is simply “pitch”.

The Pitch class contains two getter methods annotated as
@AspectMusicProperty; getMidiPitch() and getPitchClassAndOctave(). The
annotation of latter requires that its values be quoted. Consequently, by rule
2, the logic representation contains two predicates midiPitch/1 and
pitchClassAndOctave/1.

AspectMusic/J Tutorial DRAFT 1.0

Page 19 of 24

4.4.3 Composition History

The composition history associated with each event is represented by a set of
history/5 predicates.

history(partName,classifierName,voiceNumber,historyItemIndex,H)

The partName, classifierName and voiceNumber arguments identify the event
to which the history refers. The historyItemIndex value is used to establish
the sequence of history events for a particular event.

The representation of the history event (H) depends upon the kind of history
event.

Repository Location events are represented repositoryLocation/1 predicates,
whose single argument is list of param/2 predicates, each representing a
key/value pair, describing the location of the event within the repository.

For example, an event which occupied index 1 of voice 1 in the rhythm
classifier of the CMU “Q1”, located in dimension “Rhythm”, concern “Motives”
would be represented as follows. Note that the term “dataSet” is used rather
than “voice”. This is because the repository location event is generated by
MDDR rather than AspectMusic/J.

repositoryLocation([

param(identity,"0"),
param(unit,"Q1"),
param(dimension,"Rhythm"),
param(concern,"Motives"),
param(classifier,"rhythm"),
param(dataSet,"1")])

Transformation events are represented as transform/1 predicates, whose
single parameter is a list of param/2 predicates, each representing a
key/value pair describing the parameters passed to the transformation. In
addition, the value of the key “class” contains the fully qualified name of the
transformation class.

The following example shows a transformation event recording that an
instance of the TransposeTransform class, with the parameters delta=5 and
unitType=”pitch”, was applied to the event.

transform([
 param(unitType,"pitch"),
 param(delta,"5"),
 param(class,
 "aspectmusicj.HyperMusic.StandardTransformer.TransposeTransform")
])

AspectMusic/J Tutorial DRAFT 1.0

Page 20 of 24

5 The MIDI Toolkit

The MIDI toolkit implemented by AspectMusic was a from-scratch
implementation of all the MIDI support required by the AspectMusic system.
As a consequence this package was quite complex. In contrast, because MIDI
support is available for Java (javax.sound.midi), the MIDI toolkit included with
AspectMusic/J is somewhat simpler.

The toolkit consists of two key areas of functionality. Firstly support for
importing MIDI data into Composed Music Units. Secondly, support for
transforming Composed Music Unit and MusicSpace structures into Java MIDI
data structures that can be used by external tools.

5.1 Rendering CMUs

CMUs can be rendered as MIDI sequences using an instance of the
aspectmusicj.MidiToolkit.rendering.CMUMidiRenderer class. This class
extracts the pitch and rhythm classifiers from a given CMU and transforms
them into a MIDI sequence. Note that this class will provide default pitch or
rhythm elements if required.

5.2 Rendering MusicSpaces

MusicSpace instances can be rendered using an instance of the
aspectmusicj.MidiToolkit.rendering.MusicSpaceMidiRendererEx class. This
class renders data from pitch, rhythm, dynamic and harmony classifiers,
expecting, respectively Pitch, Rhythm, DynamicLevel and Chord primitive
instances.

AspectMusic/J Tutorial DRAFT 1.0

Page 21 of 24

6 Extending AspectMusic/J

AspectMusic/J has been implemented in a way that facilitates extension and
modification.

6.1 Writing Transformations

Transformations must be derived from AbstractCDUTransformation. This
abstract class contains a number of utility methods used by both the
Transformation framework and transformation implementations.

AbstractCDUTransformation declares the abstract method doTransform(). This
is the method that will be invoked by AspectMusic/J when a transformation is
to be evaluated.

 public abstract ComposedDataUnit
doTransform(ComposedDataUnit target)
throws TransformationException;

Concrete transformation implementations must therefore implement this
method.

The parameter “target” is the ComposedDataUnit (ie CMU) that is to be
transformed. The return value is expected to be the transformed CMU. Note
that all necessary copy operations are performed by AspectMusic/J.
Consequently, the CMU that is passed to doTransform() is a private copy that
may be modified in-place and returned, without side-effects.

At the point that AspectMusic/J calls doTransform(), any parameters that
have been passed to the transformation will be available in the ParameterSet
object returned by getParameters().

6.1.1 Static vs Dynamic Typing

In many cases, transformations will be implemented by calling methods on
the objects that represent musical information, contained by the DataItems
within CMUs.

Some operations may be common across a number of different objects. For
example, a “scale” method might be invoked on objects representing pitch,
dynamic level or rhythm. In a statically typed system, such as Java, the
implementation of a transformation that can operate on multiple object types
is likely to require some mixture of interface implementation, use of
instanceof, and casting.

AspectMusic/J Tutorial DRAFT 1.0

Page 22 of 24

AspectMusic/J also supports a dynamic method invocation scheme for
transformations. This scheme removes the need for transformation
implementations and their target objects to use static-typing contrivances
such as those described above. All that is required is for the method, taking a
single ParameterSet parameter, to be defined on the target object’s class. In
order to use this scheme, the transformation implementation simply calls the
invokeTransformMethod method, inherited from AbstractCDUTransformation.

For example, the call

invokeTransformMethod(obj,”scale")

calls the method Object scale(ParameterSet) on the object obj, passing a
ParameterSet containing any parameters that have been passed to the
transformation.

6.1.2 Composition History

Each time an object is transformed, its composition history should be updated
to include details of the transformation. The AbstractCDUTransformation
method getCompositionHistoryItem() can be used to obtain a suitable
composition history item for any AbstractCDUTransformation-derived
implementation.

6.2 Custom Primitives

It is possible to add new primitives to AspectMusic/J. There is no base class
for primitives, however there are a few requirements that must be met in
order for custom primitives to operate correctly within AspectMusic/J.

6.2.1 Integration with Repository Persistence

As has been explained, the Repository persistence mechanism uses Java’s
XMLEncoder facility to render the object graph represented by a Repository as
an XML file. In order to be persisted in this way, primitive classes should
follow the JavaBean patterns for property getters and setters, and have a
parameter-less constructor.

If this is not possible, then a custom PersistenceDelegate must be provided.
Customer PersistenceDelegates can be registered with the
HyperMusicRepositoryPersistenceHelper by calling its
setPersistenceDelegate() method.

AspectMusic/J Tutorial DRAFT 1.0

Page 23 of 24

6.2.2 Integration with HyperMusic

As part of the composition mechanism, HyperMusic needs to be able to
produce copies of CMUs. HyperMusic therefore requires that any primitive
object contained by a CMU can be requested to create a copy of itself. This is
achieved by requiring that primitives implement the DeepCopyable interface
method Object deepCopy().

In practice, if an object is immutable, it may simply return itself. The default
primitives Pitch, Rhythm and DynamicLevel, which are immutable, implement
deepCopy() in this way. The deepCopy() implementation of the (mutable)
Chord primitive, in contrast, constructs and populates a new Chord instance.

6.2.3 Integration with the Logic Gateway

The supplied PrologReifier implementation transforms primitive instances
into a Prolog representation as follows:

className(propertyName(propertyValue), propertyName(propertyValue),…)

Each JavaBean property that is to form part of the representation must be
annotated as @AspectMusicProperty. This annotation enables the user to
determine whether or not the value should be quoted in the Prolog
representation. By default, values are quoted.

7 References

[1] P. Hill, S. Holland, and R. Laney, "An Introduction to Aspect Oriented

Music Representation," Computer Music Journal, vol. 31, pp. 47-58,
2007.

[2] P. Hill, "Aspect-Oriented Music Representation," in Centre for Research
in Computing, vol. Ph.D. Milton Keynes: The Open University, 2007.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Elements of Reusable Object-Oriented Software: Addison Wesley,
1996.

[4] H. Ossher and P. Tarr, "Multi-Dimensional Separation of Concerns in
Hyperspace," IBM T.J.Watson Research Center RC
21452(96717)16APR99, 1999.

[5] M. Balaban, "Music Structures: Interleaving the Temporal and
Hierarchical Aspects in Music," in Understanding Music with AI: MIT
Press, 1992.

[6] P. Hill, S. Holland, and R. Laney, "Symmetric Composition of Musical
Concerns," in Proceedings of the 5th International Conference on

AspectMusic/J Tutorial DRAFT 1.0

Page 24 of 24

Aspect-Oriented Programming (AOSD06). Bonn, Germany: ACM, 2006,
pp. 226-236.

[7] W. D. Meuter, J. Brichau, and K. Mens, "SOUL Manual (draft)," Vrije
Universiteit Brussel 2006.

[8] "JLog - Prolog in Java," 1.3.6 ed, 2007.

