
U.B.O LÉON Fabien

UFR Sciences et Techniques

Département Informatique

IUP Ingenierie Informatique
Licence 3, année 2008/2009

Brain Computer Music Interface
using

Harmony Space

ICCMR - University of Plymouth

31th March - 19th June
Supervisor: Eduardo R. Miranda

Brain Computer Music Interface
using

Harmony Space

Fabien Léon ICCMR - UBO 3

Acknowledgment

 I would like to acknowledge Eduardo R. Miranda who had proposed this subject,
Phillippe Le Parc to make me in contact with him. François Monin for monitoring and interest in
my project. Obviously also the PhD student working in the laboratory and Simon Holland for their
cordial welcome.
 I would like to thank the IUP informatique and the Plymouth University for make this
kind of work placement possible.

Fabien Léon ICCMR - UBO 4

Summary

INTRODUCTION .. 6
I. THE PROJECT.. 7

1. WaveRider and WaveWare... 7
2. Harnony Space.. 10

II. RESEARCH... 11
1. What is MIDI and OSC ?.. 11
2. MIDI to OSC translator... 13
3. Communication protocol... 13

III. REALIZATION .. 15
1. PureData Version.. 15
2. Java Version .. 21

CONCLUSION... 24
Glossary.. 25
Annexes .. 26

Table of Contents

Diagram 1. The ensemble... 7
Diagram 2. Brain Computer Interface... 7
Picture 1. WaveRider .. 8
Picture 2. Screenshot of WaveWare... 8
Picture 3. Waveware box setup windows .. 9
Picture 4. screenshot of Harmony Space.. 10
Table 1. Composition of an OSC message... 12
Picture 5. MouseTrap software ... 13
Picture 6. Example of Pd program... 15
Picture 7. Simple Pd MIDI to OSC translator ... 16
Picture 8. Example of Pd outlet ... 17
Picture 9. Pd program, MIDI to OSC translator ... 18
Picture 10. Pd program, OSC generator ... 19
Picture 11. Pd program, UDP sender .. 20
Picture 12. Pd program, final OSC generator .. 20
Picture 13. Pd program, final MIDI to OSC translator ... 20
Picture 14. Java MidOsc screenshot... 21
Diagram 3. schéma UML du programme Java... 22

INTRODUCTION

 I am in the last year of a three year Degree in computer science. I do it in France in the
IUP “Ingerierie Informatique” of UBO. During this year the have to do a three months work
placement. I wanted to do it abroad, and I choose the ICCMR lab of the Plymouth University.

 ICCMR means Interdisciplinary Centre for Computer Music Research. That's a
laboratory managed by Eduardo R. Miranda. Poeple who work there do research at the cross road of
music and computer science.

 The project that I work on, is at the cross roads of neurobiology, engineering sciences
and music. It consist in music composition with brain signal. Research has been done on this
subject, in the lab and over the world. But our solution should be cheaper. That's a good point to be
used in musical therapy, for the people with physical disabilities. It can be also used for art
performance.

I. THE PROJECT

 Composition of music by brain need two essential things. One for extracting
information from the brain, and one to compose music. For the first one, other research carried out
in the lab, have led to use a device from MindPeak. This choice is due to the fact that use a non-
invasive method and because it is cheaper than other device use the same method. With regard to
the music composer, we will use Harmony Space, a software developed for build music chords
according to rules from musical theory.

 My role in the project consist to find a way to make the both part work together. To do
that I needed to understand how they work. So I was studying about the MindPeak software, and I
was go to Milton Keynes to meet Simon Holland, the developer of the harmonic space.

Diagram 1. The ensemble

1. WaveRider and WaveWare

 The ensemble for brain information extracting from MindPeak is composed of
WaveRider and WaveWare, respectively the hardware and software.

Diagram 2. Brain Computer Interface

Brain Computer Interface
(WaveRider / Waveware)

Harmony Space

PC
WaveWar

e

WaveRider

Waverider and EEG

 The box has 4 channels and a GSR specialize input. Wareride can measure the low
electricity activity of brain, muscles and with the GSR, the resistance of the skin. The biological
data thus collected are then sent to the computer through the serial port.

Picture 1. WaveRider

 The method to measure the brain activity is called Electroencephalography. That's the
only one we have to use. EEG is measured as a voltage difference between two or more electrodes
on the surface of the scalp. It's a difficult signal to handle because it's filtering by meninges, skull
and scalp. Furthermore the signals are sums of signals arising from many possible sources,
including artefacts like the heartbeat and eyes blink. Contact of electrodes with the skin must be the
better as possible, to get a signal that the software can scrutinize it.

Waveware

 Data coming through serial port have been digitized, but they are still raw data.
WaveWare will process their transformation into usable data, which can be displayed or used to
generate midi sounds.

Picture 2. Screenshot of WaveWare
 This screenshot show Waveware wirking with 5 boxes, which the position and setting
are saved on a configuration file. There are two kinds of box, here “MIDI: A=1” is to generate
sound and the others are to display.
Four kinds of display:
 Bars Graph : power on frequencies of the signal
 Spectrogram : power on frequencies according to time
 General Graph : temporal representation after processed by the following methods
 Digital Filter
 Ratio of two Filters
 Reward/Suppress
 Reward/Suppress Ratio
 Power in passbands
 Ration of Power in passbands
 Average Frequency
 Coherence (Amplitude Method)

 Following picture show the box setup windows. The first one is for MIDI and have two
significant section. Input: to choose what you want to transform in MIDI. Output to select which
aspect of the MIDI sound will be modified by input.

Picture 3. Waveware box setup windows

 The society which developed WaveRider and WaveWare, describe it as an experimental
musical instrument intended for musical performance and composition, education, and experimental
computer applications. In practice it can make midi sound with information from the brain, but that
doesn't sound like music. That's why we want to use Harmony Space.

2. Harnony Space

 This software is developed by Simon Holland from the Open University of Milton
Keynes. The aim is not to generate music with brain signal but for playing, analysing and learning
about harmony.
 It is a software using the research on music theory to build chord of music. It allow user
to compose chords of music according to a chosen theory rules.

Picture 4. screenshot of Harmony Space

 The design of the interface draws on Balzano's and Longuest-Huggins' theories of tonal
harmony.
 In the center there is the space that you can click on to generate chord. The left column
is to choose the rules of composition, the right to record, play and move in the space, and the piano
is to visualize the note used in the chords.

 On the picture 4, you can see an example. In the space the are some red note which is
the path following by the previous notes. On the piano, the red keys are those pressed to build the
chord according to the latest pressed note.

II. RESEARCH

 The fact that Squeak can't read on MIDI port, require us to find another way to make the
both soft communicate. The easiest is to use an existing soft, it's that I explain in the second part.
According to the result, Simon and me have found a communication protocol, it's that I explain in
the last part. But for a better understanding, in a first time I will define what is MIDI and OSC.

1. What is MIDI and OSC ?

 Understanding these both communications protocols has been an important part of the
project like the comprehension of EEG signals. But this part doesn't contain a full description, it's
just for understand the development.

Musical Instrument Digital Interface

 MIDI is an industry standard protocol that enables electronic musical instruments to
communicate, control, and synchronize witch each other. It does not transmit an audio signal; it
transmits “event messages” such as the pitch and intensity of musical notes to play. Usually The
MIDI messages are sent by a physical medium like cable. But they can pass from a software to
another across a virtual MIDI port.
 This protocol allows controlling multiple devices, so each message contains an
information called channel. This enables the devices to know if the message affects them. There is
multiple kind of MIDI message, but we will concentrate in the most useful.

Contained messages:
 Note Off, Note On => channel's number
 key's number (note's number)
 velocity
 Control Change => channel's number
 control's number
 control's value

Example of message: 1000 nnnn 0kkkkkkk 0vvvvvvv
 1000 : message identifier
 nnnn : channel number (from 0 to 15)
 kkkkkkk : the key (note) number (form 0 to 127)
 vvvvvvv : the velocity (form 0 to 127)

Open Sound Control

 MIDI has some limitation that's why some people decided to develop OSC. It works on
network system, with TCP or UDP protocols. So, it can be used with the classical Ethernet device.

The OSC Address of an OSC Method is a symbolic name giving the full path to the OSC Method in
the OSC Address Space, starting from the root of the tree.
OSC Packets: An OSC packet consists of its contents, a contiguous block of binary data, and its
size, the number of 8-bit bytes that comprise the contents. The size of an OSC packet is always a
multiple of 4. The contents of an OSC packet must be either an OSC Message or an OSC Bundle.
The first byte of the packet's contents unambiguously distinguishes between these two alternatives.
OSC Messages: An OSC message consists of an OSC Address Pattern followed by an OSC Type
Tag String followed by zero or more OSC Arguments.
OSC Address Patterns: An OSC Address Pattern is an OSC-string beginning with the character '/'
(forward slash).
OSC Type Tag String: An OSC Type Tag String is an OSC-string beginning with the character ','
(comma) followed by a sequence of characters corresponding exactly to the sequence of OSC
Arguments in the given message. Each character after the comma is called an OSC Type Tag and
represents the type of the corresponding OSC Argument.
OSC Arguments: A sequence of OSC Arguments is represented by a contiguous sequence of the
binary representations of each argument.

OSC message example: /un/test 1000 -1 hello 1.234 5.678

Path Type Tag String Argument “i”

/ u n / t e s t , i i s f f 1000

2F 75 6E 2F 74 65 73 74 00 00 00 00 2C 69 69 73 66 66 00 00 00 00 03 E8

 Argument “i” Argument “s” Argument “f” Argument “f”

-1 h e l l o 1.234 5.678

FF FF FF FF 68 65 6C 6C 6F 00 00 00 3F 9D F3 B6 40 B5 B2 2D

Table 1. Composition of an OSC message

2. MIDI to OSC translator

 There are two possibilities for the translation. One is to build a program, and the easiest
one is to find an existing software to do it. I will explore this opportunity in a first time.

MouseTrap software

 After a long research on internet I was found only one software that works on Windows.
The aim of this software is remote control of a computer mouse by using MIDI or OSC. But it can
also translate MIDI to OSC.

Picture 5. MouseTrap software

 To do it, we have to run twice the program. Set one to receive MIDI for translation, and
the other to send OSC. But after various trying, it appear have a matter. Each attempt I lost control
of the mouse.
 This is not a good solution, so I will try to write one by myself.

Programming

 To develop the software I need to choose a programming language. At first, I thought
about Java because it's easy to build a graphical interface, there is a MIDI package, and I was found
an OSC library (). But I was found another programming language, named PureDate. It was
especially developed for music, it is a flux-based programming, and it is really easy to lean.

3. Communication protocol

 When I have gone to the Milton Keynes, Simon showed me to how HSP works, and the

fact that it wasn't able to compose music at the moment. And I explained to Simon how WaveWare
work and which kind of information we can extract from the EEG. So, together we have to decide
what is usable to adjust the composer and how we can compose.

What we can send ?

 Due to the fact that I need to write a programme for the translation. We decide to use it
to pre-process the information from Waveware. We also decide to start with a simple one, just for
improve the chain of software. That means we will use simple composition rules, and extract just
some information from the EEG.
 After a discussion about the meaning of some information from the EEG, we decide to
control the composer with just three informations that is the volume, the tempo and the nicety.

Between WaveWare and MIDI/OSC

 For these three variables I have to find an aspect of the EEG that can be more or less
controllable by the user.
I have found what I can use in the documentation of Waveware:

Volume → Alpha/Beta
Tempo → relax: ratio of power in passbands, between 10-13Hz and 4-40Hz [manual p.76]

Nicety → concentration: reward/suppress Ratio, between beta and theta wave [manual p.100]

The first information according to the tempo, changes the note's number of MIDI channel 1
between 0 and 127 to made a period between 250 and 1270ms

The second information according to the volume, changes the note's number of MIDI channel 2
between 0 and 127.

The third information according to the nicety, change the note's number of MIDI channel 3. It is
interpreted like that: notes less than 60 means nice and notes upper than 60 means nasty.

between MIDI/OSC and HSP

 The MIDI notes will be interpreted by the translator and will be sent in three OSC
messages like that:
''/hsp/nice'' path send with a boolean argument to say to HSP what kind of music playing.

''/hsp/event'' path send to HSP like a tempo. (one event equal one note played)
''/hsp/volume'' path send with an interger argument for control the volume.

III. REALIZATION

 According to the research I have learnt the graphical programming language Puredata.
So, after explain how PureData and my program work, I'll explain why finally I have written a java
program.

1. PureData Version

 PureData is defined like a real-time graphical dataflow programming environment for
audio, video, and graphical processing.

Picture 6. Example of Pd program

 The programming environment is composed of a main Pd window, which contain the
logs, and possibly one or more programming window. Programming consists to put boxes and link
them. And due to the fact that Pd is a real time programming, you have just to switch between
“edit” and “run” mode to run it.

There are four types of boxes:
•In picture 6 you can see three number boxes, that's GUI box, because in “run” mode you can affect
it by click on. In the GUI group there are also the toggles buttons, the sliders and other that we will
see after.
•The message boxes interpret the text as a message to send whenever the box is activated, that can
be by an incoming message or with the mouse.
•All the others item on picture 6 are objects boxes. This is the most useful one, the behaviours and
the number of input/output of them, is defined by what you typing on. Can type like in my example
“-”, “<”, “print”, “send” and “receive”. After some of then I have writing other thing, it's like
argument. We can also write “* 4”, to build an object for multiply by 4.
•The last kind of box, doesn't look like box, it's the comment.

 Now we have the basics knowledge to understand PureData programming. So, I will
explain the functioning of my program and also the objects used.

MIDI to OSC translator

 Before according with Simon about the protocol, I had written a very simple program to
test if Pd is so easy that I read and if the translation is possible. For each MIDI note received, it
build an OSC message which the path is '/midi' and the arguments are MIDI note number, velocity
and channel.

Example: MIDI → note:63, velocity:108, channel:2
 OSC message → '/midi 63 108 2'

Picture 7. Simple Pd MIDI to OSC translator

 To understand how it work I have commented the code with what is sent by the boxes

according to the example.

 The first box at the top is a MIDI note receiver. Its three outputs are the note number,
the velocity and the channel. These outputs are linked to the three last input of the pack box to build
a list of them. The pack box receives also a message from a message box, which contains two
words. The First is a kind of command which will be interpreted by the packOSC box, and the
second is the path of the OSC message.
 There are a strange link between notein and the message box that can explained by the
fact that all the box have one ''hot input'' and possibly one or more ''cold input''. Only the ''hot input''
refresh the output, so in this program when a MIDI note arrive the message box doesn't interpret it
as a number but just as a trigger. It send the message and the pack box build the list.
 The list box is only used to delete the 'list' indicator before build the OSC message with
packOSC. The next box is an output, used to link this program to another box.

Picture 8. Example of Pd outlet

 This other version of the translator is according with the protocol.

Picture 9. Pd program, MIDI to OSC translator

 There are some difference between this and the other one. The biggest is the massive
use of send and receive box for compartmentalize the program (I used alias for send and receive
which are 's' and 'r'). One other big difference is a GUI part (in the red square). It is use to modify
the aspect of the box.
 The three part on the left contain a notein box with an argument to limit the received
notes to one channel. The first part use channel one to control a metronome, and send it as 'tempo'
to trigger other parts. It also receives a start information from the GUI. The second and third parts
use channel 2 and channel 3 to send volume and nicety to the GUI each tempo signal.
 The GUI part is use to allow the user to start translation and to see what is sent. The
float boxes are used to refresh the displayed values only when received a tempo signal.
 The next part simply builds an 'event' message each tempo signal. And the OSC packer
part makes the message ready to send.
 Like the simple version after the packOSC box, I send messages outside.

OSC generator

 It appears than Simon needs a test program to improve the new implementation of
Harmony Space during its development. I chose to let the user control over what is sent, So I have
wrote a program which can build OSC messages with informations from a GUI.

Picture 10. Pd program, OSC generator

 It's approximately the same than the translator. I just replace all the notein boxes by
receive one. The received informations come from GUI button and slide bar. For example the
metronome is controlled by the box 'r gui_tempo', that is send by the GUI slide bar 'Tempo'. The
fact that the slide bar sends its output signal as 'gui_tempo' is due to its internal configuration.

UDP sender

 The two previous described programs build OSC message. So, now we need a program
to send it. Part about the UDP function, and the graphical function that a was written
I have called this function OSC_sender but it can send all kind of UDP packet.

I was written a GUI extention of the ''udpsend'' Pd function.
This function has one input (called ''inlet'' here) that is directly connected to the input of the
''udpsend'' box. There is also an output that I use for the ''connected'' GUI (button) displayer.
On the screen shot of the function you can see a red square (called canvas by Pd) that used for
change the classical representation of the function (grey box with the name write in). In this square I
have put two button for the connection and disconnection, a number box and a (button) displayer.

Picture 11. Pd program, UDP sender

 In this one there is a GUI part too, that allow the user to set the local port, Connect and
Disconnect. We can see three link to the input of the udpsend box, which are a part linked to the
'Connect' button another linked to the 'Disconnect' button. And the part in the middle is the input of
the box. I have named it OSCsender but it can send what you want.
 Of course I know that UPD is a not connected protocol. I used this word because it's the
name of the command I need to use with the udpsend box. I think it's a stretch of language, and the
connect and disconnect command is used for open and close the socket.

Final program

 In the previous part, I explained the internal programming of the boxes that I have
created for the project. Now we can link the created boxes to send the Osc messages by UDP.

Picture 12. Pd program, final OSC generator

Picture 13. Pd program, final MIDI to OSC translator

 Like I said at the beginning, when you run a Pd program, there are one window for the
running program and the Pd window. So, when we run the whole project, there are four windows
opened. Furthermore Pd is an programming environment, It's not user friendly. That's why I decide
to programming a java version.

2. Java Version

 When user run the application the graphical interface is built. In the same time a list of
the MIDI devices is made. With this list the user can configure the translation, choice the input
MIDI device, and for the output there are two texts fields for the host name and port. On the
graphical interface there are also two buttons to launch HSP and Waveware.

Picture 14. Java MidOsc screenshot

 The 'start' button launch the two most important part of the software, according to the
user configuration. The first one is the MIDI receiver, its role is to receive MIDI notes and in
function of the channel, send to the other part the information to build OSC messages. I was called
the other part OSC engine because it is a thread with an infinite loop to send at regular interval the
OSC messages. The loop time is defined by the informations from the MIDI receiver.

Classes

Diagram 3. UML Java program

 MidiTools class is used for create the list of midi input present on the computer. The list
is created by midiDeviceList method and accessible as an array of MidiDevice. It was also used for
create and set the midi receiver with the method setTransmission, and to close all with
endTransmission method.

 The MidiReceiver class implement the Receiver interface from midi package. It need to
be associate with a MIDI device, that is the role of the setTransmiter method from Miditools class.
After that, the send method is called automatically each midi message received in the selected
device. This method called some method of OscEngine to set the content of the future sent
messages.

 The OscEngine class inherit from Thread class. So, the start method launches the run
function in a thread. Its role is to send the OSC message cross the socket define when calling the
constructor. The metronome time is defined by MidiReceiver. The information sent is those defined
in the protocol so volume, nice/nasty, and period for the next sending.

 The MidiOscJframe class inherit from Jframe class. This class builds the graphical user
interface, to allow the user to select the MIDI device and enter the OSC host and port. They are four
buttons to start and stop the conversion, and to launch the both software (Waveware and HSP).

Future Changes

 The next step is to make a more sophisticated version of the composer that perhaps need
other information from the EEG. So to adapt the translator there are only two functions to modify.
The send method of the MidiReceiver class, to change the read channel, or to interpret it in another
way. And the run method of the OSCengine class, to change the messages sent.

CONCLUSION

 The last day I have testing the whole project, that is the chain: WaveRider – Wareware
– MidOsc – Neurophony. Waveware crash often, Perhaps due to the battery level of waverider
during the test. And before I have tested the chain with a recorded brain wave and that works fine.
 The uses of Java instead of Pd, was a good one because, I add function like the launcher
and because that be more easy to use, because Java (contrary to Pd) is already installed on most
computers.

 Results being obtained pleasant, we can realize a more complex version.

Glossary

UBO : Université de Bretagne Occidental (University of Western Brittany)
IUP : Institut Universitaire Professionnalisé (Professionalized Academic Institute)

ICCMR : Interdisciplinary Centre for Computer Music Research
EEG : Electroencephalogram (or Electroencephalography)

OSC : Open Sound Control
BCI : Brain-Computer Interface

BCMI : Brain-Computer Music Interface
HSP : Harmony Space

Pd: PureData

Annexes

MidOscJFrame.java
MidiTools.java
MidiReceiver.java
OscEngine.java

MidOscJFrame.java
package midosc;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 *
 * @author fleon
 */
public class MidOscJFrame extends javax.swing.JFrame {

 /** Creates new form MidOscJFrame */
 public MidOscJFrame() {
 initComponents();
 init();
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 @SuppressWarnings("unchecked")
 // <editor-fold defaultstate="collapsed" desc="Generated Code">
 private void initComponents() {

 jPanelLauncher = new javax.swing.JPanel();
 jButtonWaveWare = new javax.swing.JButton();
 jButtonHSP = new javax.swing.JButton();
 jPanelConf = new javax.swing.JPanel();
 jLabelMidiIn = new javax.swing.JLabel();
 jLabelMidiDevice = new javax.swing.JLabel();
 jComboBoxMidiDev = new javax.swing.JComboBox();
 jLabelOscOut = new javax.swing.JLabel();
 jLabelOscHost = new javax.swing.JLabel();
 jTextFieldOscHost = new javax.swing.JTextField();
 jLabelOscPort = new javax.swing.JLabel();
 jTextFieldOscPort = new javax.swing.JTextField();
 jPanelStarter = new javax.swing.JPanel();
 jButtonStart = new javax.swing.JButton();
 jButtonStop = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
 setTitle("MidOsc");

 jPanelLauncher.setPreferredSize(new java.awt.Dimension(300, 23));
 jPanelLauncher.setRequestFocusEnabled(false);
 jPanelLauncher.setLayout(new java.awt.GridLayout(1, 0));

 jButtonWaveWare.setText("Launch WaveWare");
 jButtonWaveWare.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mousePressed(java.awt.event.MouseEvent evt) {
 jButtonWaveWareMousePressed(evt);
 }
 });
 jPanelLauncher.add(jButtonWaveWare);

 jButtonHSP.setText("Launch Harmony Space");

 jButtonHSP.setActionCommand("Launch Harmony Space");
 jButtonHSP.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mousePressed(java.awt.event.MouseEvent evt) {
 jButtonHSPMousePressed(evt);
 }
 });
 jPanelLauncher.add(jButtonHSP);

 getContentPane().add(jPanelLauncher, java.awt.BorderLayout.PAGE_START);

 jLabelMidiIn.setFont(new java.awt.Font("Tahoma", 1, 12));
 jLabelMidiIn.setText("Midi Input");

 jLabelMidiDevice.setText("Midi device : ");

 jLabelOscOut.setFont(new java.awt.Font("Tahoma", 1, 12));
 jLabelOscOut.setText("OSC Output");

 jLabelOscHost.setText("Host : ");

 jTextFieldOscHost.setText("localhost");

 jLabelOscPort.setText("Port number : ");

 jTextFieldOscPort.setText("1200");

 org.jdesktop.layout.GroupLayout jPanelConfLayout = new
org.jdesktop.layout.GroupLayout(jPanelConf);
 jPanelConf.setLayout(jPanelConfLayout);
 jPanelConfLayout.setHorizontalGroup(
 jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelConfLayout.createSequentialGroup()
 .addContainerGap()
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelConfLayout.createSequentialGroup()
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelConfLayout.createSequentialGroup()
 .add(10, 10, 10)
 .add(jLabelMidiDevice)
 .add(18, 18, 18)
 .add(jComboBoxMidiDev, 0, 123, Short.MAX_VALUE))
 .add(jLabelMidiIn))
 .add(67, 67, 67))
 .add(jPanelConfLayout.createSequentialGroup()
 .add(jLabelOscOut)
 .addContainerGap(206, Short.MAX_VALUE))
 .add(jPanelConfLayout.createSequentialGroup()
 .add(10, 10, 10)
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelConfLayout.createSequentialGroup()
 .add(jLabelOscPort)
 .add(18, 18, 18)
 .add(jTextFieldOscPort, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 102,
Short.MAX_VALUE))
 .add(jPanelConfLayout.createSequentialGroup()
 .add(jLabelOscHost)
 .add(18, 18, 18)
 .add(jTextFieldOscHost, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 139,
Short.MAX_VALUE)))
 .add(81, 81, 81))))

);
 jPanelConfLayout.setVerticalGroup(
 jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelConfLayout.createSequentialGroup()
 .addContainerGap()
 .add(jLabelMidiIn)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLabelMidiDevice)
 .add(jComboBoxMidiDev, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))
 .add(18, 18, 18)
 .add(jLabelOscOut)
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLabelOscHost)
 .add(jTextFieldOscHost, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)
 .add(jPanelConfLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jLabelOscPort)
 .add(jTextFieldOscPort, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))
 .addContainerGap(12, Short.MAX_VALUE))
);

 getContentPane().add(jPanelConf, java.awt.BorderLayout.CENTER);

 jPanelStarter.setPreferredSize(new java.awt.Dimension(423, 50));

 jButtonStart.setText("Start");
 jButtonStart.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mousePressed(java.awt.event.MouseEvent evt) {
 jButtonStartMousePressed(evt);
 }
 });

 jButtonStop.setText("Stop");
 jButtonStop.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mousePressed(java.awt.event.MouseEvent evt) {
 jButtonStopMousePressed(evt);
 }
 });

 org.jdesktop.layout.GroupLayout jPanelStarterLayout = new
org.jdesktop.layout.GroupLayout(jPanelStarter);
 jPanelStarter.setLayout(jPanelStarterLayout);
 jPanelStarterLayout.setHorizontalGroup(
 jPanelStarterLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(jPanelStarterLayout.createSequentialGroup()
 .add(43, 43, 43)
 .add(jButtonStart, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,
org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(18, 18, 18)
 .add(jButtonStop, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 73, Short.MAX_VALUE)
 .add(99, 99, 99))
);
 jPanelStarterLayout.setVerticalGroup(
 jPanelStarterLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)
 .add(org.jdesktop.layout.GroupLayout.TRAILING, jPanelStarterLayout.createSequentialGroup()

 .addContainerGap(16, Short.MAX_VALUE)
 .add(jPanelStarterLayout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE)
 .add(jButtonStart)
 .add(jButtonStop))
 .addContainerGap())
);

 getContentPane().add(jPanelStarter, java.awt.BorderLayout.PAGE_END);

 pack();
 }// </editor-fold>

 private void init() {
 // MIDI Tool (list midi devices)
 mt = new MidiTools ();
 try {
 mt.midiDeviceList();
 for (int i = 0 ; i < mt.midindev.length ; i++) {
 jComboBoxMidiDev.addItem(mt.midindev[i].getDeviceInfo());
 }
 } catch (Exception ex) {
 System.out.println("err1: " + ex);
 }

 }

 /*
 * Launch WaveWare
 */
 private void jButtonWaveWareMousePressed(java.awt.event.MouseEvent evt) {
 try {
 java.lang.Runtime.getRuntime().exec("cmd /c start WAVEWARE.BAT");
 } catch (Exception ex) {
 Logger.getLogger(MidOscJFrame.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 /*
 * Launch Harmony Space
 */
 private void jButtonHSPMousePressed(java.awt.event.MouseEvent evt) {
 try {
 java.lang.Runtime.getRuntime().exec("cmd /c start HSP.BAT");
 } catch (IOException ex) {
 Logger.getLogger(MidOscJFrame.class.getName()).log(Level.SEVERE, null, ex);
 }

}

 /*
 * Start the translation
 */
 private void jButtonStartMousePressed(java.awt.event.MouseEvent evt) {
 try {
 if (!started)
 {
 // disable editing on combobox and textfield (for keep selected the device)
 jComboBoxMidiDev.setEnabled(false);
 jTextFieldOscPort.setEnabled(false);
 jTextFieldOscHost.setEnabled(false);

 // start osc engine
 oeng = new midosc.OscEngine(jTextFieldOscHost.getText(), jTextFieldOscPort.getText());
 oeng.start();
 // open midi device, set receiver and transmitter
 mt.setTransmission (jComboBoxMidiDev.getSelectedIndex(), oeng);
 started = true;
 }
 } catch (Exception ex) {
 System.out.println("err2: " + ex);

 }
 }

 /*
 * Stop the translation
 */
 private void jButtonStopMousePressed(java.awt.event.MouseEvent evt) {
 if (started)
 {
 // close midi device
 mt.endTansmission(jComboBoxMidiDev.getSelectedIndex());
 oeng.end();
 // enable editing on combobox and textfield
 jComboBoxMidiDev.setEnabled(true);
 jTextFieldOscPort.setEnabled(true);
 jTextFieldOscHost.setEnabled(true);
 started = false;
 }
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new MidOscJFrame().setVisible(true);
 }
 });
 }

 // My varables
 private MidiTools mt;
 private OscEngine oeng;
 private boolean started = false;
 // End of My variables

 // Variables declaration - do not modify
 private javax.swing.JButton jButtonHSP;
 private javax.swing.JButton jButtonStart;
 private javax.swing.JButton jButtonStop;
 private javax.swing.JButton jButtonWaveWare;
 private javax.swing.JComboBox jComboBoxMidiDev;
 private javax.swing.JLabel jLabelMidiDevice;
 private javax.swing.JLabel jLabelMidiIn;
 private javax.swing.JLabel jLabelOscHost;
 private javax.swing.JLabel jLabelOscOut;
 private javax.swing.JLabel jLabelOscPort;
 private javax.swing.JPanel jPanelConf;
 private javax.swing.JPanel jPanelLauncher;

 private javax.swing.JPanel jPanelStarter;
 private javax.swing.JTextField jTextFieldOscHost;
 private javax.swing.JTextField jTextFieldOscPort;
 // End of variables declaration

}

MidiReceiver.java
package midosc;

import javax.sound.midi.MidiMessage;
import javax.sound.midi.ShortMessage;
import javax.sound.midi.Receiver;

/**
 *
 * @author iccmr
 */
public class MidiReceiver implements Receiver
{
 OscEngine oeng;

 MidiReceiver (OscEngine aOeng) {
 oeng = aOeng;
 }

 public void close () {
 }

 /*
 * Function called each MIDI message received
 */
 public void send (MidiMessage message, long lTimeStamp)
 {

 if (message instanceof ShortMessage)
 { ShortMessage sm = (ShortMessage)message;
 if (sm.getCommand() == 0x90) //if it's note on
 {

 // Interpret the MIDI messages
 // and send to the OSC engine the extracted informations
 switch (sm.getChannel())
 {
 case 0 : int period = sm.getData1();
 oeng.setPeriod(period<25 ? 250 : period*10);
 break;
 case 1 : oeng.setVolume(sm.getData1());
 break;
 case 2 : if(sm.getData1() > 60)
 oeng.setNice();
 else
 oeng.setNasty();
 break;
 }

 }
 }

 }

}

MidiTools.java
package midosc;

import java.util.ArrayList;
import javax.sound.midi.*;
import javax.sound.midi.MidiDevice.Info;

/**
 *
 * @author iccmr
 */
public class MidiTools {

 protected MidiDevice[] midindev;
 protected Transmitter trm;
 protected Receiver rcv;

 /**
 * Test if it's a midi input device
 *
 * @param MidiDevice Device to check
 */
 protected static boolean isInput (MidiDevice md) {
 // if it hasn't Receiver, it's a MIDI IN port
 if (md.getMaxReceivers()==0)
 return true;
 else
 return false;
 }

 /**
 * Build a list of the midi input device
 */
 protected void midiDeviceList () throws MidiUnavailableException {
 Info info[];
 info = MidiSystem.getMidiDeviceInfo();
 MidiDevice[] midev = new MidiDevice[info.length];
 ArrayList tmpList = new ArrayList<MidiDevice>();
 for (int i = 0 ; i < info.length ; i++) {
 midev[i]= MidiSystem.getMidiDevice(info[i]);
 if (isInput(midev[i]))
 tmpList.add(midev[i]);
 }
 midindev = (MidiDevice[]) tmpList.toArray(new MidiDevice[0]);
 }

 /**
 * Set the Transmitter and the Receiver associated
 *
 * @param devNo MIDI device number
 * @param oeng to associate MidiReceiver and OscEngine
 */
 protected void setTransmission (int devNo, OscEngine oeng) throws MidiUnavailableException
 {

 midindev[devNo].open();
 trm = midindev[devNo].getTransmitter();
 rcv = new MidiReceiver(oeng);
 trm.setReceiver(rcv);
 }

 /**
 * Close the MIDI Device
 *
 * @param devNo MIDI device number
 */
 protected void endTansmission(int devNo)
 { // close midi device
 midindev[devNo].close();
 trm.close();
 rcv.close();
 }

}

OscEngine.java
package midosc;

import java.net.InetAddress;
import midosc.osc.OSCMessage;
import midosc.osc.OSCPortOut;

/**
 *
 * @author iccmr
 */
public class OscEngine extends Thread {

 protected int period = 2000;
 protected int volume = 0;
 protected boolean nice = true;
 protected boolean started = true;
 final Object obj = new Object();

 OSCPortOut sender;

 OscEngine (String ahost, String aport) {
 try {
 // --- create socket
 int port = Integer.parseInt(aport);
 InetAddress host = InetAddress.getByName(ahost);
 sender = new OSCPortOut(host, port);
 } catch (Exception ex) {
 System.out.println("OscEngine: " + ex);
 }
 }

 /*
 * send periodicaly OSC message according to the value of
 * the variables: period, volume and nice
 */
 @Override
 public void run () {

 // for sendimg only when change
 int volumeTmp = 0;
 boolean niceTmp = false;

 try {

 // --- for osc message
 OSCMessage msgEvt = new OSCMessage("/hsp/event");
 OSCMessage msg;
 Object arg[] = new Object[1];

 while(started)
 {
 // --- send nice message
 if (nice != niceTmp)
 {
 niceTmp = nice;
 if (nice == true) arg[0] = new Integer(1);
 else arg[0] = new Integer(0);

 msg = new OSCMessage("/hsp/nice", arg);
 sender.send(msg);
 System.out.println("OscEngine: send: Nice/Nasty");
 }
 // --- send volume message
 if (volume != volumeTmp)
 {
 volumeTmp = volume;
 arg[0] = new Integer(volumeTmp);
 msg = new OSCMessage("/hsp/volume", arg);
 sender.send(msg);
 System.out.println("OscEngine: send: volume(" + volumeTmp + ")");
 }

 // --- send event message
 sender.send(msgEvt);
 System.out.println("OscEngine: send: event");

 // to execute action in the loop periodically
 synchronized (obj) {
 obj.wait(period);
 }
 }

 } catch (Exception e) { System.out.println("oscengne: " + e);}
 }

 protected void setVolume (int newVolume)
 { volume = newVolume;
 }

 protected void setPeriod (int newPeriod)
 { period = newPeriod;
 }

 protected void setNice () { nice = true; }

 protected void setNasty () { nice = false; }

 /**
 * go out of the loop
 */
 protected void end ()
 {
 started = false;
 synchronized (obj) {
 obj.notify();
 }
 }
}

