
Dec 24th 2004

1

When is Direct Combination Useful?
Simon Holland

Computing Department, The Open University, Walton Hall,
Milton Keynes, MK7 6AA, United Kingdom

S.Holland@open.ac.uk

1 Introduction
When is Direct Combination useful? It would be valuable to be able to broadly
characterise situations and domains in which DC is likely to be useful and those in which
it is not. The question is open to empirical investigation, but pending such investigations,
in this paper we apply theoretical arguments to seek preliminary insights. All of the
arguments in this paper are of an a priori nature. They may offer a useful source of
heuristic guidance to builders of prototype DC systems. The strategy of the paper is to
seek to characterise domans and situations in which Direct Combination can usefully
reduce search for users. and to try to identify the trade-offs involved in such reductions
of search. We begin with some fairly straightforward observations.

2 When is Direct Combination useful?

2.1 DC may be useful even when applied only to some interactions, some of the time
DC does not have to be applicable all of the time in order to be useful. The principle of
subsumption (TR2002/1) makes it easy for DC interactions to be used sporadically
amongst a mixture of more conventional interactions. DC is not a straitjacket, it gives
new freedoms: there is little or no cost to users to have it there for when needed. For
designers of the system, of the other hand, comprehensive provision of DC requires
effort, but DC can be applied iteratively and incrementally at low cost (Issues in n-dim
DC).

2.2 Sufficient variety of objects
DC is unlikely to reduce search in domains with only one or two different kinds of object.
However, the number of different kinds of objects in the domain does not have to be very
large before the number of possible pairs becomes sufficiently large to have the potential
to reduce the user's search space. This follows from simple arithmetic arguments. Given
n differentiable object types in a domain, there are n2 different ordered pairs of object
types. For example, in a domain with just five different object types, there are twenty five
different object type ordered pairs. If we assume for the sake of argument that there are
five operations uniquely associated with each ordered pair of object types, then
specifying a pair of objects could reduce the search space for relevant commands from
one hundred and twenty five operations down to a space of five operations. In practice,
operations are unlikely to be so evenly distributed amongst pairs; not all operations will
be unique to particular pairs; and the ordering of pairs will not always be important:
however the general argument remains valid.

 2

2.3 Sufficient variety of operations
DC is unlikely to reduce search in a domain with a very small number of distinct
operations in total. However, note that whether or not a search space of a given size is
large enough to pose search problems for a given user may depend on factors such as the
user's familiarity with the domain, and the extent to which they are distracted at the time,
for example in a 'minimal attention situation'. This makes it hard to characterise the size
of the space of operations required for DC to be useful. At one hypothetical extreme,
consider a domain with only a handful of operations to start with, but where the
commands are unfamiliar, and where the user must focus on the environment as much as
possible. If the user is able to select pairs of objects of interest in the environment by AC
and so reduce even a small search space of applicable operations down to one or two
operations, nevertheless given a sufficient degree of unfamiliarity and distraction, this
might constitute a useful reduction in search. Hence, consideration of task, situation and
user is necessary.

2.4 Distribution of operations among objects pairs
DC is unlikely to reduce search in a domain where all of the operations of interest are
distributed amongst a very small proportion of the set of available object type pairs.
Similarly, DC is unlikely to reduce search in a domain where all pairs of objects respond
to more or less exactly the same set of operations. However, in many domains,
opportunities can be found to better distribute operations amongst object pairs. Also,
as noted previously, consideration should be given to task, situation and user.

2.4.1 Not too many operations associated with single pairs of objects
This is a special case of the previous consideration. Pairwise interaction may not be
directly useful with pairs of objects that have too many operations associated with them.
However, when two objects have a very large space of interactions, it often reflects the
fact that the objects have many subparts, attributes or roles, whose potential interaction
produces the multiplicity of operations. In such domains, if DC is applied recursively
(Baroque DC) this typically cuts down the search space significantly, allowing DC to be
useful again. However, a degree of navigation (among the subparts of an object) is
typically required in recursive DC, so there are trade-offs on the amount of search
required to use recursive DC. This may make recursive DC less attractive in some
situations where minimal attention is at a premium, depending on the alternatives
available

2.5 Sufficient visibility and findability of objects
For DC to be useful, objects of interest must be:

• visible to the user
• findable without undue search

This is partly a restatement of the principles of Direct Combination. The importance of
the second stipulation is clear, since otherwise the problems of finding commands have
merely been traded for the problems of finding objects of interest. Note that findability is
not a function solely of the environment or display - it will depend on the user and the
situation.

 3

2.6 Cost of searching for commands is high
DC is worth considering when search for verbs is hard for reasons to do with the domain,
user or situation. For example, when the user is distracted, or the task or objects involved
are unfamiliar, or the user interface or environment is complex. The next item is a special
case of this.

2.6.1 Unfamiliar situations, objects or tasks
In situations that are infrequently encountered, or unusual tasks, or in situations which
involve unfamiliar objects, DC is likely to be helpful. There are some dynamic
configuration situations which routinely involve the need for interaction between
unfamiliar objects. DC is likely to be helpful in such domains.One converse of this
consideration is that when users are highly familiar and skilled with existing ways of
doing things, DC is less likely to be attractive to users.

2.7 Dynamically changing configurations
One class of problem is likely to arise more frequently as mobile and ubiquitous devices
become more common. In situations with mobile users moving though resource rich
environments, new devices and resources will continually be coming into range in novel
combinations. The constantly changing combinations of resources have the potential to
afford an abundance of unfamiliar and novel interactions. This will apply on a variety of
temporal and spatial scales, as users walk around, drive around, enter particular buildings
public spaces, or offices, collaborate in offices, visit homes and move to other rooms etc.
As well as applying to individuals, this problem applies to groups. In many areas of life,
groups of people, each with their own sets of varied equipment, information sources or
other resources (e.g.laptops, projectors, printers, etc) must come together in ad-hoc
groups to collaborate on tasks with non-routine elements. This can occurs in locations
with their own combinations of resources which may be unfamiliar to participants. The
consequent combinatorial explosion of interactions between resources presents problems
for users and for user interface designers.
Ambient Combination is well adapted to cope with such situations by letting users
counter the combinatorial explosions with their own combinatorial implosions: By
explicitly selecting one or more object of interest, users can reduce the search space to
manageable proportions.

2.8 Tasks situations with an inherent pairwise focus
DC is likely to be a particularly good candidate in domains or tasks where pairs of objects
are the typical object of focus: for example in tasks where or domains where users need
to take objects pair by pair and set up a particular kind of interaction between them.

2.9 Minimal Attention Situations and situations with limited feedback bandwidth
User tolerance for search tasks is greatly reduced in minimal attention situations and in
situations where minimal feedback bandwidth is available. Given that other conditions
are met, DC is a good candidate in such situations . DC is worth investigating wherever
the user wishes or needs to focus on the environment, or must minimise the attention paid
to feedback devices. DC is also promising where the user needs to minimize the need for

 4

inputting information (for example when the user's favoured hand is required for other
tasks) as it allows interactions to be specified as much as possible by simple pointing

2.10 Domains where rich, well abstracted object-oriented domain models alread y exist
In domains where a rich, well abstracted object-oriented domain model exists, a large
proportion of the work required to create a DC broker has already been done. Hence in
pragmatic terms, such domains are worth considering for the application of DC.

2.11 Data Translation
DC tends to be particularly appropriate when data must often be translated between
diverse formats (indeed, this was the origin of DC). One class of special cases where this
insight could be exploited is in any commercial and organisational situation where after a
user has interacted with some system to provide information or express choices,
information then needs to be transcribed into a standard form for the purposes of some
other interaction. This is common where a customer interacts with a professional, who
then needs to enter into a series of business to business interactions on their behalf, for
example in the travel industry, legal professions, building professions etc.

3 Existing isolated uses of DC
In this section we consider some existing situations where DC is used. Dmix (H&O,
1999) is the first system where a version of DC was systematically and uniformly
applied. However, existing isolated special cases of AC and DC can be found in many
places. Here we note some examples.

3.1 Cut and Paste
Some applications routinely use a version of Direct Combination whenever cut and paste
is used. The "special paste" in programs such as Microsoft Excel is an example of this.

3.2 Cash Tills
As noted in (Baroque) cash tills may be viewed as using an isolated example of Ambient
Combination. Supermarket cash tills effectively use laser scanners to make an n-fold
combination of items to be purchased, forming a resultant total cost . When a credit or
debit card is swiped in the magnetic scanner, the card forms a pairwise combination with
the collection of purchased items, and a single action is offered - purchase the goods.
Some supermarkets allow another option: "cash back", where in addition to purchasing
the goods, the customer may withdraw money.

3.3 Drag and Drop
VisualWorks is a Smalltalk programming environment, and the Refactoring Browser is a
programming tool that allows various programming components to be listed and
manipulated. Older versions of the browser required items or interest to be selected and
then menus used to choose options. The refactoring Browser is designed so that as many
drag and drop actions as possible between different pairs of items elicit appropriate
actions. This is also true of recent Browsers in the Smalltalk programming environment

 5

Squeak. Many Macintosh OS9 applications behave similarly to limited extents, for
example Sherlock, Eudora the Finder etc.

4 The role of DC in future systems
We claim that AC/DC should play a role in any successful future framework for mobile,
tangible and ubiquitous HCI. Some readers may be aware of a bygone era before
dynamic menus allowed users to recognise and select existing path names from a list.
During that epoch, user interfaces demanded that pathnames be recalled from memory
and typed in character by character. Input boxes did not yet have built-in mini text-
editors. Consequently, any subsequently discovered typing mistake at the beginning of a
pathname meant deleting the whole string and starting over again via error-prone mental
recall. At the time, and with the resources then available, the suggestion of creating
dynamic menus on the fly and providing built in text editors for every input box might
have seemed arcane, wasteful and extravagent. Today, these facilities are standard and
pass unnoticed. Most users would be unable to name these facilities or to identify the
principles on which they are based. However most of our user interfaces still demand that
we specify most (though not all) of our commands in the rigid order order noun verb, and
then use dialog box for providing any needed arguments. Sometimes this rigid ordering
of assembling the command specification demands that the user recall a verb from a maze
of possible verbs, even though the user could point to in the interface or environment the
relevant nouns which would serve to constrain the verb search. Similarly, sometimes it is
only on opening a modal dialog box and after going on to specify various arguments that
one realises that one has the original noun or verb wrong - but the current rigid ordering
of command assembly demands that this work be thrown away and the user start over
from scratch. In line with the principle of subsumption, DC requires that the user to have
the freedom to specify the command in any way they see fit, and to have immediate
feedback while they do that. We hope that users will use DC in future without even
noticing that it is there.
The first main cost of DC is a good, domain model, preferably object oriented and well
factored. Increasingly, this is a basic requirement anyway. The second cost is the
definition of the command space, but this need not hinder application, as this process is
susceptible to an iterative, incremental approach.

References
Holland,S. Morse, D.R. & Gedenryd, H. (2002) Ambient Combination: a New User
Interaction Principle for Mobile and Ubiquitous HCI. Submitted to Mobile HCI 2002
Fourth International Symposium on Human Computer Interaction with Mobile Devices,
Pisa Italy.

Holland, S. and Oppenheim, D. (1999) Direct Combination. In Proceedings of the ACM
Conference on Human Factors and Computing Systems CHI 99, Editors: Marion
Williams, Mark Altom, Kate Ehrlich, William Newman, pp262-269. ACM
Press/Addison Wesley, New York, ISBN: 0201485591.

